The attempt to destroy the cube's symmetries

s.d.a. ... = symmetrically disposed about ... \# = single introduced cube

3 -axis $=$ axis of rotation symmetry order 3 , etc.
mirror $=$ plane of symmetry

2-COLOUR CUBE ARRANGEMENTS IN $2 \times 2 \times 2$ CUBE		How cubes arranged with respect to symmetry elements							
		s.d.a. a diagonal mirror	on a diagonal mirror	s.d.a. an edgebisecting mirror	$\begin{aligned} & \text { s.d.a. } \\ & \text { a 2- } \\ & \text { axis } \end{aligned}$	$\begin{aligned} & \text { s.d.a. } \\ & \text { a 3- } \\ & \text { axis } \end{aligned}$	on a 3- axis	$\begin{aligned} & \text { s.d.a. } \\ & \text { a 4- } \\ & \text { axis } \end{aligned}$	distinguishing feature: cubes share ...
Number of cubes of second colour and their coded arrangement '3a' means a cube has been added to ' $2 a$ ', etc.	1		\#				\#		
	2a		\#\#				\#\#		a space diagonal
	2b		\#\#	\#\#	\#\#				an edge
	2c		\#\#					\#\#	a face diagonal
	3a		\#\#\#						
	3 b	\#\#	\#						a face
	3c					\#\#\#			
The resulting tree is helpful but not unique	4a				\#\#\#\#				
	4b1		\#\#\#\#		\#\#\#\#			\#\#\#\#	
	4b2	\#\#	\#\#			\#\#\#	\#		
	4b3	\#\#	\#\#					\#\#\#\#	a face
	4c	\#\#	\#\#			\#\#\#	\#		no edges

Observations:

1. Every cube lies at a vertex, on an edge, on a face.
2. Every cube lies on a diagonal mirror and a 3 -axis.
3. No cube lies on a 2-axis, a 4 -axis or an edge-bisecting mirror.
4. There is no need to go beyond 4 introduced cubes because doing so simply reverses the colours.
