Times Table Triangles

The investigation is an opportunity to explore arithmetic progressions. At KS2 \& KS3 they may be represented as a staircase, using Multilink cubes or simply squared paper. The children will also need a multiplication square (preferably one going as far as 15 x 15 , as in the examples) and a ' $45-45-90$ ' set square.

We'll talk at KS4 level but all cases can be instanced with the above materials.
An arithmetic progression has a first term, a, a last term, l, and a mean, m, which is both the mean of the whole sequence and the mean of the first and last terms:
$m=\frac{a+l}{2}$.
If there are n terms, and the difference between successive terms is d,
$l=a+(n-1) d$.

This makes $m \frac{a+[a+(n-1) d]}{2}=\frac{2 a+(n-1) d}{2}$
and the sum of the whole sequence n times this, $m n=\frac{n[2 a+(n-1) d]}{2}$.
The children can break off the top of their Multilink staircase, give it a half turn and use it to complete a rectangle of height m and width n. If n is even, the break falls across the two middle values; if odd, the middle value is m :

What do the 6 cases presented have in common?
$d=2$. So it's useful if the children make up sequences where d is not 2 , and test them with their set squares. Take $2,5,8,11,14$ (total 40). They find the total on the symmetry axis of the set square but above the right angle. Add the next term, 17, to give a total of 57. This time the sum is not to be found at all. The symmetry axis cuts the first row of the table between cells 9 and 10. If the table was graduated in halves, 57 would be there in row $6: 57=6 \times 9 \frac{1}{2}$. For the mean to be a whole number, a and l must have the same parity, but here a is even, l odd. Notice from equation (2), therefore, that $(n-1) d$ must be even so at least one of $(n-1)$ and d must be even.

Can we work out where on the set square's symmetry axis the sum will fall?
Yes. It must fall in row n because the symmetry axis passes through m and the total is $m n$. If d is 1 , it will fall below the apex; if 2 , exactly on it; if more than 2 , above it.

