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    The Scottish Bubble and the Irish Bubble 
                        A Maths Club Project 
 The Elementary Mathematics in an Advanced Problem 
 
Overview 
 
The contents of this CD are intended for you, the leader of the maths club. 
The material is of 3 different kinds:  
 
history: the problems in their historical setting: how they arose, how people first tackled 
them. Many of you will be specialists in a science other than maths. I hope you find 
something to interest you personally among the references I have cited. I also hope you take 
this project as an opportunity to work with colleagues from across the curriculum.  
 
calculation: what students of school age can work out for themselves; something not for 
club-time but as a private challenge for the keen. This work is pitched at the 16-18 age 
range. However, elementary algebra, Pythagoras’ Theorem, trigonometric identities and 
their use in solving triangles is almost all the maths the students will need. 
 
experiment: what the students can do and make. This is the project core and can involve 
students from right across the secondary age range. With a weekly session of an hour and a 
half, the work will take a full term. 
 
As you see, these headings appear as possible bookmarks down the left side of the screen. 
 
Introduction 
 
When scientists turn to mathematicians for answers, they expect them to have ready-made 
solutions, something they can pull down off the shelf. In one area, packing, this has not been 
the case. The reason lies in the problems’ untidiness. To identify a packing as the best, one 
must exclude all others possible. This invariably involves an exhaustive process, using hours 
of computer time, and the results are difficult to check manually. On the other hand, the 
problems are usually easy to state and understand and your students, the mathematicians of 
the future, may come up with simple insights which will make the computer algorithms more 
efficient. It also happens that those who are authorities on the subject are also good 
communicators [1]. 
 
Our subject is the ‘Kelvin’ problem. But we enter it via two related problems: the ‘Tammes’ 
problem and the ‘Kepler’ problem. All three require us to think about spheres in some way. 
We devote a chapter to each. Connecting these are the all-important ‘links’. 
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shells, pores in pollen grains, achetes on dandelion clocks, dimples in a golf ball 
 
 Link 1-2: what if those things are spheres themselves?    
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 Link 2-3: what shape do you get if you squash them together? 
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Notes 
 
[1] Aste, T. & Weaire, D. (2008), The Pursuit of Perfect Packing, (2nd edition), Taylor & 
Francis. 
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Chapter 1 
 
history 1:  Thomson and Tammes 
 
By the end of the nineteenth century it was known that atoms contained positive and 
negative electrical charge in equal measure and that the negative charge was concentrated in 
the tiny packets we now call ‘electrons’. It was not known how they were distributed through 
the atom, and it would be 5 years before it was confirmed that they all had equal charge, but 
in 1904 their discoverer, J.J.Thomson, considered the following problem: 
 
How would n identical point charges distribute themselves on the surface of a sphere so that 
the total potential energy was minimal? 
 
This total was proportional to the sum of the reciprocals of the distances between all the pairs 
of charges. It was therefore least when the charges were as far from each other as possible. 
Thinking of the point charges as vertices of a polyhedron – necessarily one inscribable in a 
sphere – the question was therefore: 
 
What polyhedron will 2, 3, 4, … point charges form? 
 
He confessed “I have not as yet succeeded in getting a general solution” – and no one yet 
has! 
 
In 1930 the Dutch botanist Tammes was studying the distribution on the surface of (more or 
less) spherical pollen grains of the pores through which the pollen contents issue on 
fertilisation [1]. The first thing he noticed was their number: there were 4 and 6 (but never 
5), 8 and 12 (but rarely 7, 9, 10 and almost never 11). The second was that they tended to be 
distributed regularly over the surface. He took a rubber ball and a pair of compasses and 
drew circles on them centred on the imaginary pores. He asked the question: 
 
How would n pores arrange themselves so that the smallest distance between any two was as 
large as possible? 
 
The question is often called the Problem of the Friendly Dictators. n dictators agree to divide 
up their planet so that the border of each circular empire is an equal circle [2].  
 
The ‘Thomson’ question and the ‘Tammes’ question are not quite the same. Take the case n 
=5. 
 
experiment 1:  work on the Lénárt sphere 
 
Take a Lénárt sphere [3] and compasses and repeat what Tammes did for this case. 
 
You should find that you can make 3 circles of angular radius 600 centred on points around 
the equator. But that leaves you with circles of only 300 centred on each pole. 
It turns out that this is the best solution to the Thomson problem. But now centre 4 points 
around the equator and one on a pole. Each circle will have an angular radius of 450 , an 
angle greater than 300. You will realise you could also have used the other pole. In other 
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words, for Tammes’ purpose, the n = 5  solution is no better than the n = 6  solution: in both 
cases the points define a regular octahedron. 
 
You can find tables of the best solutions found to the Thomson problem [4]. Your students 
can use Polydron (‘Frameworks’) [5] to build their own best guesses. Because all Polydron 
edges are the same, only the regular deltahedra will accurately fit a sphere. But the object is 
only to distinguish the forms topologically – to realise, for example, that the solution for 
n = 5  is a triangular dipyramid (2 congruent triangular pyramids stuck base-to-base), not a 
square-based pyramid. 
 
Here is a table showing the dozen most interesting shapes. These are the n values the 
students should try to model.  
 
n  Regular 

polygon 
Regular 
deltahedron 

Dipyramid Approximation to 
this semiregular 
solid 

Antiprism -
between 
-pyramids 

Other  
shape 

2 ‘digon’      
3 triangle      
4  tetrahedron 

= digonal 
antiprism 
 

    

5   triangular    
6  octahedron 

= triangular 
antiprism 
 

    

7   pentagonal    
8    square 

antiprism 
  

9      triangular 
prism with 
pyramid on 
each square 
face 

10     square 
antiprism 

 

12  icosahedron 
= pentagonal 
antiprism 
between 
pyramids 

    

14     hexagonal 
antiprism 

 

24    snub cube   
 
Notice how many antiprisms or antiprisms-between-pyramids there are. If the solution for 
n = 8  was a cube, we could add a triangular antiprism-between-pyramids. (The triangular 
faces would be right-angled isosceles.) Surprisingly, it’s not. Using a couple of formulae 
from spherical trigonometry, older students can do the calculation to compare the Thomson 
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energies for the cube and Archimedean square antiprism [6]. Though the best solution to the 
Thomson problem for n = 8  is not exactly Archimedean, the Tammes solution is. The 
students can test this on the model sphere. 
 
A. Draw 8 circles which each fill 1/8 of the sphere so that their centres define a cube. 
Measure their radial angles. 
B. Start again. The 4 circles in the northern hemisphere stay in contact but move a short way 
down their meridia (0° , 90°E ,90°W ,180° ) so that they extend over the equator. They will 
have grown a little. The 4 circles in the southern hemisphere move E (say) 45° and their 
centres move up their meridia till they touch their northern neighbours. Draw the new 
situation. You will have to keep rubbing out and redrawing till you’re happy the northern and 
southern circles are the same size. Measure the radial angles. You should find that, within 
experimental accuracy, the new circles are bigger than the old ones. (The angular radii are 
respectively around 35°  and 37 1

2
° .) 

 
Ask the students what is special about the solutions for n = 4,6  and 12. 
 
The answer to this question is important. In terms of equal Tammes circles centred on the 
vertices, these solutions are the spherical analogy of close packing in the plane: 
 
Figure Number of nearest neighbours 
Tessellation 36   6 
Solid 35 (icosahedron) 5 
Solid 34 (octahedron) 4 
Solid 33 (tetrahedron) 3 
 
 
These arrangements of points are uniform in the following sense. You will know the 
dandelion clock from childhood. The parachute ball of flowers of the genus Taraxacum 
consists of more than a hundred tiny arrows (‘achetes’), their tails (‘pappi’) forming a 
feathery white ball, their heads (the single-seeded fruit) stuck together at the centre: 
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Think of the shafts of these arrows as rays emanating from the centre of the inner sphere, 
their tails as points on the outer sphere. Any two arrow shafts (other than a pair directly 
opposed) define a great circle and form an angle in that particular plane. If there is no third 
shaft in this plane between two chosen ones, we shall call them ‘adjacent’. 
 
Can all pairs of adjacent achetes make the same angle?  
 
Answer: No. Consider the shafts of 3 arrows adjacent in pairs. If the pairs form the same 
angle, the tails form an equilateral triangle. Over the whole sphere, therefore, our condition 
can only be met if the tails define one of the regular deltahedra listed above. There would 
have to be only 4,6 or 12 achetes for this to be possible and we’ve got more than a hundred 
to accommodate.  
 
This means, among other things, that all pairs of dimples on a golf ball cannot be equally 
spaced. How then do you make a ‘fair’ golf ball, meaning that its flight is not affected by 
how you sit it in the tee when driving off? Manufacturers have chosen certain numbers of 
dimples (our n values) and patented designs for them which they claim are the best. On the 
Tammes criterion – that the smallest angle between two should be as large as possible for 
that number – it turns out that certain values of n allow better arrangements than others. We 
shall investigate these, the ‘magic’ numbers, shortly. Incidentally, as well as the pores on a 
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pollen grain which Tammes was studying, there are dimples and spikes which serve the same 
function as the dimples on a golf ball: to extend its flight [7, 8]. 
 
In the case of pollen seeds it seems nature has tried to give the pores as much space as 
possible; the same applies to dandelion clocks and their seed parachutes. How has it solved 
the problem? As it always does: by letting rival models fight it out over millions of 
generations, a principle programmers have copied under the name ‘genetic algorithm’. 
 
Another example: manned space exploration is expensive and arguably less productive 
scientifically than unmanned exploration. Consider a further flight to one of the larger moons 
of Saturn or Jupiter. We wish to determine the internal structure of the satellite by placing 
seismometers on the surface. If we are to devote 2, 3, 4, 5, … to the project, how should they 
be placed? 
 
The magic numbers were found by people studying the structures of viruses in the early 
1960s. (See references to ‘CK’ (Caspar & Klug) in [9]. My own treatment is based on [10].)  
 
experiment 2:  work on isometric paper 
 
Take a sheet of isometric paper. You could use it to draw the net for a regular icosahedron. 
There would be 20 faces and, when you folded it up, you would find that you had 12 
vertices. But instead you’re going to use it to create a pseudo-icosahedron – in fact many. 
 
In Chapter 2 we shall make a Kepler packing, a shell of 12 spheres packed tightly around a 
central one. Each sphere marks a vertex – in this case of a cuboctahedron. Now imagine 
packing a second shell around that. This time we find we have used 32 spheres. We continue. 
Our polyhedron – a pseudo-icosahedron - will approximate a sphere more and more closely. 
We shall not attempt to prove this but, with the exception of the first shell, it turns out that if 
we inscribe this polyhedron in a sphere and project the vertices on to it from the centre we 
shall have points as uniformly distributed as we can achieve for that number. The shell 
numbers are the ‘magic’ numbers. You are going to use a construction to reveal these 
numbers first suggested by the geometers H.S.M. Coxeter and his collaborator Michael 
Goldberg in the 1930s. Again, we shall not prove that the resulting arrangement is indeed the 
most uniform for that number, though we shall show how it appeals to our intuition. 
 
To draw the face of the general pseudo-icosahedron of type (a,b) , choose a vertex, move a  
edges in one direction, b  edges at 120° , and mark another. Do so symmetrically: 
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a

a
a

b

b

b

 
However you choose a  and b , there will be the vertices shown in green, but every lattice 
point on the isometric paper will also be a vertex. In the case here, (3,2) , there are 9 vertices 
on the interior of the triangle and none on the edges. We know that the complete icosahedron 
has 20 such faces, 30 edges and 12 vertices like the 3 shown. Since there are 9 vertices 
within each face but none on the edges, the total will be 20(9) +12 = 192 . 
 
Draw a triangle for every (a,b)  pair up to, say, (5,5) and make a table. 
 
When do you expect there to be points on the edge? (Answer: when a,b  are coprime or b  is 
0.) 
 
Here is part of such a table, going from (2,0) to (2,2): 
 
a  b  20 x interior points + 30 x edge points + 12 = magic number, N  
2 0     30 x 1    12          42 
2 1 20 x 3     12          72 
2 2 20 x 4    30 x 1    12         122 
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What does the Goldberg-Coxeter construction do? If we triangulate the faces of a regular 
icosahedron in the simplest way, i.e. keep the b  values zero, we shall produce a sequence of 
magic numbers, but widely spaced. By twisting the isometric grid with respect to a face we 
preserve as far as possible the uniform environment of each point while allowing 
intermediate values for the number of points per face. 
 
calculation 1:  swapping computation for construction 
 
You might wonder if there’s a formula which will save you doing all this drawing. There is. 
N

a,b( ) = 10(a
2
+ ab + b

2
) + 2 .  

We can derive the formula using a simple discovery by the Austrian Georg Pick [11, 12]. 
 
First we work out the area of our triangle using parallelograms as units: 
 
 

a

a

a

b

b a

b

b

 

Subtracting the two triangles from the trapezium, we have area A =
a
2
+ ab + b

2

2
. 

(Paul Gailiunas suggests this alternative dissection, which preserves the rotational symmetry 
of the figure: 
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              a
b

 
 
We have 3 half-parallelograms and an equilateral triangle of side (a ! b) .) 
 
Pick’s Theorem says that the area A  of such a figure drawn on a parallelogram lattice 

=
d

2
+ i !1 , where d  is the number of grid points on the boundary, i  the number in the 

interior. Setting these two expressions equal, we have a2 + ab + b2 = d + 2i ! 2 . 
In the case of every triangle, d  is made up from two kinds of points: the 3 vertex points and 
p
e
 edge points. So we can substitute (p

e
+ 3)  for d , giving a2 + ab + b2 = pe + 2i +1 . 

The number of points on a single triangle edge is 
p
e

3
. 

For N
(a,b)

 we have to add the points on all 30 edges, in all 20 face interiors and at all 12 

vertices. Thus N
(a,b) = 30

pe

3

!
"#

$
%&
+ 20i +12 = 10pe + 20i +10 + 2 = 10 pe + 2i +1( ) + 2  

= 10 a
2
+ ab + b

2( ) + 2 . 
 
The magic numbers also arise when we make a ‘geodesic’ dome of the kind designed by the 
architect Buckminster Fuller. In the classic example you start with pentagons and hexagons 
inscribed in a sphere, then join their vertices to points on the sphere to form shallow 
pyramids and a structure composed entirely of triangles. (In cases where 3 hexagons meet in 
a vertex, those hexagons must be irregular if all the vertices are to lie on a sphere.) 
 
Here is part of one: 
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calculation 2:  magic numbers and geodesic domes 
 
We start by deriving a remarkable result about polyhedra consisting only of hexagons and 
pentagons. Let the numbers of vertices, faces and edges be v, f ,e  respectively. From Euler’s 
formula we have v + f = e + 2 . 
Let there be f

6
 hexagons and f

5
 pentagons, so f = f

6
+ f

5
. 

We can work out the number of vertices by summing them for all the separate polygons then 
dividing the total by 3 since 3 faces share a vertex: 

v =
6 f

6
+ 5 f

5

3
. 

We can obtain e  in the same way, this time dividing by 2 since 2 faces share an edge: 

e =
6 f

6
+ 5 f

5

2
.  

If we substitute these expressions in the Euler formula and simplify, we are left with the 
naked fact:  
f
5
= 12 . 

This tells us that, however many hexagons our solid has, it must have exactly 12 pentagons, 
no more, no less. 
 
We now sum the vertices of our geodesic dome. These are of two kinds: 
v
a

 for the apices of the shallow pyramids (red) – one for each hexagon and pentagon: 
va = f

6
+ f

5
= f

6
+12 , 

v
b

 for the vertices of the generating solid (blue): 

vb =
6 f6 + 5 f5

3
=
6 f6 + 5(12)

3
= 2 f6 + 20 . 

So v = va + vb = f
6
+12( ) + 2 f

6
+ 20( ) = 3 f6 + 32 , which we shall write 3 f

6
+10( ) + 2 . 

 
Since there are 6 triangular faces for every hexagon and 5 for every pentagon: 
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f = 6 f6 + 5 f5 = 6 f6 + 5(12) = 6 f6 + 60 = 6( f6 +10) . 
 
Each face has 3 edges, each shared by 2 faces, so: 

e =
3

2
f = 9( f

6
+10) . 

 
(You can check that our expressions for v, f  and e  are consistent with the Euler formula.) 
 
To summarise: 
v = 3 f

6
+10( ) + 2!" #$ , 

f = 2 3 f
6
+10( )!" #$ , 

e = 3 3 f
6
+10( )!" #$ . 

 
It turns out that the forms which give the most even distribution of points on the sphere – 
‘even’ in the sense we have been investigating – are those where the expression in square 
brackets = 10T , where T , the ‘triangulation number’, is our familiar expression 
a
2
+ ab + b

2 .  
 

We have, then, 3 f
6
+10( ) = 10T , i.e. f

6
=
10 T ! 3( )

3
. This expression only gives an integral 

value for f
6
 when T is a multiple of 3, implying in turn that f

6
 is a multiple of 10. It’s 

instructive to compile the following table – to be continued as far as you like, the last column 
of which yields magic numbers: 
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a  b    T = a
2
+ ab + b

2  
f
6
=
10 T ! 3( )

3
 v = 3 f

6
+10( )!" #$ + 2  

1   0   1   
1   1   3   
2   0   4   
2   1   7   
2   2 12   30 122 
3   0   9   20   92 
3   1 13   
3   2 19   
3   3 27   80 272 
4   0 16   
4   1 21   60 212 
4   2 28   
4   3 37   
4   4 48 150 482 
5   0 25   
5   1 31   
5   2 39 120 392 
5   3 49   
5   4 61   
5   5 75 240 752 
 
 
summary: 
 
We have examined two problems, the ‘Tammes’ problem and the ‘Thomson’ problem. 
Though distinct, we would expect the solutions to converge as the number of points n  
became large. 
 
The ‘Tammes’ problem is difficult because it deals with the sequence of natural numbers on 
the one hand, and with the symmetries of 3-dimensional solids on the other. The latter 
generate their own integer sequence, from which many of the natural numbers are missing.  
 
We have looked at special values of n , the so-called ‘magic’ numbers, and discussed 3 
separate ways in which they arise: 
 
(a) We begin with a unit sphere and form shells of like spheres about it. We project from the 
centre on to an enclosing sphere through the centres of the spheres in a given shell.  
 
(b) We begin with a regular icosahedron and use a particular construction to impose an 
isometric grid upon it. Again, we project the points which arise from the centre on to an 
enclosing sphere. 
 
(c) We begin with a polyhedron consisting of pentagons and hexagons inscribed in a sphere 
and add points corresponding to the apices of pyramids with those polygons as bases. 
 
We note a correspondence between (b) and (c): in both cases 12 pentagons occur; in (b) 
around the 12 vertices of the original solid, in (c) as a consequence of the Euler condition. 
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In all three cases a rule is applied which plausibly distributes points on the surface of the 
sphere as evenly as possible but we have offered no mathematical justification for this.   
 
   
 
Notes 
 
[1] Tammes, P.M.L. (1930) ‘On the Origin of Number and Arrangement of the Places of 
Exit on Pollen Grains’, Recuil d. trav. Bot néerlandais 27, 1. 
 
[2] In Isaac Asimov’s novel ‘Foundation and Earth’ (Grafton, 1987) these dictators, the 
‘Solarians’, are hermits since their subjects are robots. 
 
[3] Go to http://www.keypress.com/x5883.xml . 
 
[4] Go to http://en.wikipedia.org/wiki/Thomson_problem . 
 
[5] Go to http://www.polydron.com . Turn to p.11 in the downloadable catalogue. You will 
need equilateral triangles (code 10-F300), isosceles triangles with an apical angle smaller 
than 60°  (code 10-F301) and squares (code 10-F400). 
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[6] calculation 3:  the Thomson solution for 8 electrons   
 
First, the cube.  
 

a

1

O

!

!/2

a/2

sf

1

 
 
O  is the centre of the sphere, radius 1. s , the space diagonal of the cube and the diameter of 

the sphere, is 3a . Thus a =
2

3
, whence ! = 2arcsine

a

2

"
#$

%
&'
= 2arcsine

1

3

"
#$

%
&'
( 70 1

2
° . 

Choosing one of the 8 points, we note that there are: 
3 at distance a  from it, 
3 at distance f = 2a  from it, 
1 at distance s = 3a  from it. 
 
Now, the square antiprism. We need to know the angle !  corresponding to ! , the angle at 
the centre of the sphere subtended by an edge of the solid, before we can work out its length, 
b . We have drawn the necessary ‘spherical triangles’ on the surface of this little polystyrene 
sphere. The sides of such triangles are great circles, curves where planes through the sphere’s 
centre cut the surface. The ‘length’ of a triangle side is the angle it subtends at the sphere’s 
centre. The ‘angle’ between its sides is the dihedral angle between those planes. It turns out 
that the trigonometric formulae for such triangles can be as simple as, or simpler than, those 
for plane triangles.  
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π/2−τ

θ/2

π/4

π/8

τ
θ/2

 
 
The big red dots are 3 vertices of the square antiprism. They lie at the same latitude, ! , north 
and south of the equator. The apex of the upper triangle is the north pole. We’ve taken one of 
the two congruent lower triangles. 
 
To the top triangle we apply the spherical equivalent of the sine rule: the ratios of the sines of  
the sides to the sines of the opposite angles are all the same: 

sin
!
2
" #$

%&
'
()

sin
!
2

=

sin
*
2

$
%&

'
()

sin
!
4

. This simplifies to sin
!
2

"
#$

%
&'
= sin

(
4
cos)  [I]. 

To the bottom triangle we apply the spherical equivalent of the cosine rule, which is 
particularly simple in the case of a right-angled triangle: the cosine of the hypotenuse is the 
product of the cosines of the other sides: 
 

cos
!
2

"
#$

%
&'
= cos

(
8
cos)  [II]. 
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We divide [I] by [II] to obtain tan
!
2

"
#$

%
&'
=

sin
(
4

cos
(
8

=

2sin
(
8
cos

(
8

cos
(
8

= 2sin
(
8

, whence 

!
2

"
#$

%
&'
= arctan 2sin

(
8

"
#$

%
&'

, giving ! " 75
° , and, splitting an isosceles triangle into 2 right-

angled ones, as we did for the cube, b = 2sin
!

2
. 

 
Here is our square antiprism shown out of its sphere but complete: 
 

3!/4

bcos(!/6)

 
 
 
These views allow us to work out all the distances we need. Two regular trapezia are shown 

in green, one inverted and turned 
3!

4
 with respect to the other. A slant side is the altitude of 

an equilateral triangle face of our antiprism. A shorter side has length b , a longer side 2b , 
so we can use the small green right-angled triangle to work out the height of the antiprism. 
We can also work out the length of the base of the big green isosceles triangle because an 

equal side has length 
2b

2
. We now have what we need to work out the hypotenuse of the 

big green right-angled triangle, which turns out to be 2 +1( )b . 
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Choosing one of the 8 points, we note that there are: 
4 at distance b  from it, 
1 at distance 2b  from it, (the one at the opposite corner of the square), 
and 2 at a distance 2 +1( )b  from it, (the distance we’ve just shown how to work out). 
 
Now we can do the Thomson calculation, which is to add the reciprocals of all the distances. 
To compare the two solids we need only do so for 1 point and its 7 neighbours since all 8 
points are identically situated with respect to the others: 
 

The cube: 
3

1
+
3

2
+
1

3

!
"#

$
%&
1

a
.  The square antiprism: 

4

1
+
1

2
+

2

2 +1( )

!

"
#
#

$

%
&
&
1

b
. 

Substituting the values we’ve found for a  and b , we find the second represents an 
improvement of around 0.2%. (As noted in the main text, the best solution is not 
Archimedean: you can obtain a further improvement by making the square-triangle edge 
slightly shorter than the triangle-triangle edge, so that the triangles remain isosceles but are 
not equilateral.) 
 
[7] For the comparison go to http://www.inwit.com/inwit/writings/dimpledgolfball.html . 
 
[8] For scanning electron micrographs of pollen grains go to 
http://en.wikipedia.org/wiki/Pollen and click on the enlargement ikon. 
 
[9] Zandi, R. et al (2004), ‘Origin of Icosahedral Symmetry in Viruses’, UCLA article. 
 
[10] Stewart, I. (1989), Game, Set and Math, Penguin, pp.79-81. 
 
[11] Stephenson, P. (2009), ‘Pick’s Theorem’, Symmetry+, Issue 39, pp. 2-4. 
[12] Richeson, D.S. (2008), Euler’s Gem, pp. 126-7. [12] is more useful than [11] because 
Richeson derives the theorem from Euler’s polyhedron formula.  
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Link 1-2 
 
experiment 3:  a sphere and its icosahedral shell 
 
We are going to stick 12 polystyrene spheres, as widely separated as possible, around an 
equal sphere. We know that their points of contact (and indeed their centres) lie at the 
vertices of a regular icosahedron. We must work out how to make the model [1]. 
 
In the first picture we’ve started by sticking spheres at the north and south pole of the central 
one then added a pair in antipodal positions at the correct angle [2]. 
 
As an aside, the centres of the 4 outer spheres form a golden rectangle. 
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In the second picture we’ve added a 5th sphere. We’ve given it a paper collar to separate it 
from the pair it lies on: 
 
 

       
 
As we continue to add spheres, the collars get in the way and it’s easier just to hold them in 
position while the glue dries. The idea is to average out errors by equalising the separation 
from immediate neighbours. This is the final configuration: 
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The gaps are what will interest us in Chapter 2. 
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Notes 
 
[1] calculation 4:  the central angle adjacent sphere centres subtend  
 

2!

1

h

r

360
1

d d

2d

!

 
 
The left-hand figure shows a meridian with one point at the north pole and another at the 
latitude shown by the blue line. The length of this blue line, r , is the radius of the small 
circle shown in the right-hand figure. The length of the green line, 2d , is the distance 
between the points. What we need is the angle, 2! , this subtends at the sphere’s centre. 
 
From the right-hand figure we have r = d cosec36° . 
From the left-hand figure we have d = sin! . 
So  r = sin! cosec36° . 
We can write the area of the isosceles triangle in the left-hand figure in two ways and set the 
expressions equal: 
 

Area = dh =
1

2
r.1  

 
From the left-hand figure, h = cos! . 
Substituting, we have: 

sin! cos! =
1

2
sin! cosec36° , whence cos! =

cosec36
°

2
 and 2! = 2arccos

cosec36
°

2

"
#$

%
&'

, 

which, to the accuracy we can attain in our model, is about 63 12° . 
 
From the symmetry of this figure we realise that, if the spheres were touching, their angular 
separation would be 60°  so we can expect a gap. 
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[2] For polystyrene spheres or wooden balls use an epoxy glue (Araldite or other) which sets 
in 3-5 minutes. For table tennis balls use a petroleum-based adhesive (Evostik or other), 
though an epoxy resin will work there as well.  
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Chapter 2 
 
history 2:  Kepler 
 
Sir Walter Raleigh asked the mathematician Thomas Harriot to study the stacking of 
cannonballs. Harriot wrote to Kepler. Kepler thought that in the most efficient packing one 
ball would be surrounded by 12, arranged as follows [1]. The upper picture shows 3 layers; 
the coloured spots indicate how they locate in the assembled model in the lower picture. 
 
The diagram beneath shows why crystallographers, metallurgists and other solid state 
physicists call this arrangement ‘face-centred cubic’ (f.c.c.). You’re looking down on the 
corner of a cube which has been split in two: the lower 3 faces, meeting in the bottom-most 
vertex, are shown on the right; the upper 3 faces, meeting in the top-most vertex, are shown 
on the left. The circles show the positions of spheres in the packing. The numbers label the 
layers from the bottom. 
 
Note incidentally that the f.c.c. arrangement is merely the most symmetrical of an infinite 
number of arrangements in which the constituent layers are hexagonally packed. In the f.c.c. 
arrangement the layers form the repeated positional sequence ABC; in the hexagonal close 
packed (h.c.p). arrangement the sequence runs AB; but in silicon carbide, for example, it is 
random. 
 
There’s an interesting link with the Thomson table in Ch.1 [2].  
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Kepler admitted, however, that he could not prove this arrangement was indeed the best. 
 
It was more than 2 centuries before any progress was made on the problem when in 1831, 
following the work of L.A.Seeber, C.F. Gauss established that if the spheres were centred at 
the vertices of  a lattice – that is to say, were arranged in a pattern which repeats 
‘periodically’, i.e. by translation - the Kepler arrangement has the highest possible packing 
density (the ratio between the volume of space enclosed by spheres and the total volume).  
 
But what if an irregular arrangement is allowed? 
 
calculation 5:  the near neighbour number 
 
Here again is our icosahedral shell of 12 spheres. We picture each sphere sitting in a cone 
centred on the inner sphere. In the left-hand picture the cone touches the sphere and we know 
that the angle of this cone is the same as the angle between the centres of spheres that touch, 
60

° . In the right-hand picture we imagine our unit spheres swell until they touch. These sit in 
bigger cones. From our calculation on the separation of spheres in this arrangement we know 

the angle of these too: 2arccos
cosec36°

2

!
"#

$
%&

. In a moment we  shall halve these values as we 

shall need the cones’ semiapical angles. 
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These cones cut the sphere in little spherical caps. We can work out their area. Using 
calculus we can derive this formula for the area A!"  of any spherical zone like the one 
shaded on the left in the next diagram: A!" = 2# cos! $ cos"( ) . 
 
As an aside, we note something interesting about this formula.  
cos! " cos# = h , so the area is directly proportional to the height of the zone.  
This fact, known to Archimedes, has simple consequences:  
1) Cut a tomato into slices of equal thickness and the slices all have the same amount of skin;  
2) Project a transparent globe from a strip light down its axis on to a surrounding cylinder 

and the countries have their true areas; (since cos60° =
1

2
 , the areas north and south of 

latitude 30°  are equal). This is the basis of the Lambert cylindrical equal-area global map 
projection.   
 
On the right !  has become zero, and the zone a cap. The formula reduces to 
A! = 2" 1# cos!( ) .    
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The question is this. What if, statistically speaking, we could trade the number of unit 
spheres around the central sphere for the areas they command? How many spheres would we 
then have? 
 

The answer is 12 x the ratio of areas of the two cap sizes: 12
1!

cosec36°

2

1! cos30°

"

#

$
$
$

%

&

'
'
'
= 13.4  to 3 

significant figures. We’ll call this the ‘near neighbour number’. 
 
Now we know that no more than 12 unit spheres can all touch a central one – the ‘kissing’ 
number for spheres in 3 dimensions - but might we manage more in a slightly bigger shell 
with the result that if we took a volume filled with thousands of spheres all jumbled up the 
mean packing density would be slightly higher than for the ‘Kepler’ arrangement? 
 
history 3:  Scott and Hales 
 
The physicist G.D.Scott filled a container with ball bearings, shaking it periodically to let 
them settle into the densest possible arrangement [3]. In no experiment did he achieve a 
density greater than 0.64 (2 S.F.). The value for the Kepler arrangement is 0.74. 
 
On August 9 1998 Thomas Hales of Michigan University completed a proof showing that no 
arrangement as good as Kepler’s was possible. The proof showed that ‘only’ 5,000 different 
configurations have to be examined and required the writing of 3 gigabytes of computer 
program. Hales is presently attempting to reduce the computer’s role to that of a checker of 
results produced manually. He estimates that this project will take him a further 20 years [4]. 
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Notes  
 
[1] Kepler, J. (1611), On the Six-cornered Snowflake, reissued by Oxford University Press in 
1966. 
 
[2] The best shape for n=9 is a triangular prism with a pyramid on each prism face. We 
might ask whether the best shape for n=12 is a square prism with a pyramid on each 
(rectangular) prism face. But this is just our Kepler model. Here it is appropriately 
reorientated. (We shall study the arrangement further in Link 2-3. There we shall see that the 
pairs of triangles sharing a base here are right-angled isosceles and make squares.) 
 

 
 
[3] Scott, G.D. et al (1969), ‘The Density of Random Close Packing of Spheres’, J.Phys.D: 
Appl.Phys. 2, pp. 863-866. 
 
[4] http://en.wikipedia.org/wiki/Kepler_conjecture has an extensive list of references.  
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Link 2-3 
 
history 4:  Bernal, Marvin and Matzke 
 
In the liquid state, the molecules are weakly attracted by the slight excess of electrical charge 
which results from the internal charges not quite cancelling out (‘van der Waals’ forces) but 
they are essentially free to move around in the bulk liquid like a mass of ball bearings. In 
1959 the physicist J.D.Bernal wanted to know the mean number of nearest neighbours a 
molecule has in the liquid state. Back in 1727 the botanist Stephen Hales was studying the 
packing of cells in undifferentiated vegetable tissue. He squashed a random packing of peas 
in a pot and examined the resulting polyhedra, i.e. the duals of the solids defined by the 
spheres’ points of contact [1]. Bernal did the same with balls of plasticine, rolled in chalk 
dust so that they separated easily after compression. He found the mean number of faces was 
13.3 [2]. 
 
The agreement with our near neighbour number is good. But the Scott result quoted in the 
last chapter suggests that the mean separation between the spheres before they got squashed 
was high. 
 
In 1939 the biologists J.W.Marvin and E.B.Matzke used lead shot in a steel cylinder with a 
plunger. In one experiment they arranged the shot randomly, as Scott had done, but in 
another they used the Kepler packing. The typical resulting shape was the rhombic 
dodecahedron [3]. This was to be expected and had been predicted by an observation of 
Kepler himself [ch.2, 2]. Kepler observes that the loculi in a pomegranate have this form. 
How does it arise? “For the loculi to begin with, when they are small, are round, so long as 
there is enough space for them inside the rind. But later as the rind hardens, while the loculi 
continue to grow, they become packed and squeezed together.” 
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We can think of an example where the mechanism is different but the result the same: the 
honeycomb. Be aware, however, that, when the bees secrete a honeycomb, they don’t make a 
space-filling system. One lot of bees pack together sideways, each bee defining a hexagon; 
another lot, similarly packed, push in from the opposite side, so that the centre of a hexagon 
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on one side corresponds to a vertex on the other. Thinking now in 3 dimensions, and looking 
into the hexagonal prism occupied by a bee, what you see at the end of the cell are 3 
coincident rhombi forming part of a rhombic dodecahedron [4]: 
 

 
 
 
 
 
 
 
Here in white we have traced the shape formed by the centres of the 12 spheres surrounding 
a given one, and also their points of contact with it, an Archimedean solid, the 
cuboctahedron. 
 
As stated above, since the points of contact become face centres when the spheres expand, 
the solid which results is the dual of this, the rhombic dodecahedron. We show one face of 
this in red. 
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In a regular (‘Platonic’) solid all the faces are regular polygons and they’re all of the same 
kind. The cube is the only Platonic solid that packs. Is there another solid – of any kind – 
whose faces are all the same and which packs? Yes: the rhombic dodecahedron. 
 
The cube and the rhombic dodecahedron are simply related.  
 
On a chessboard black and white squares touch along an edge. Black squares touch at 
corners. Imagine the analogue in 3-D. In place of black squares imagine cubes. In place of 
white squares imagine gaps. Cubes touch only at edges and a cube face is bordered by empty 
space. 6 cubes border each cubic hole and 6 holes border each cube. Now let each cube claim 
a pyramid with its apex at the centre of each bordering hole. You have a rhombic 
dodecahedron. This solid has 6 x 4 = 24 triangular pyramid faces but each pair combine to 
make one of the 12 rhombuses, as shown in this diagram: 
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The diagram will be important when we come to examine Kelvin’s thought process in the 
next chapter. 
 
Notes 
 
[1] Hales, S. (1727), Vegetable Staticks. 
 
[2] Bernal, J.D., ‘A Geometrical Approach to the Structure of Liquids’, Nature, 183 (1959), 
pp.141-147. 
 
[3] Matzke, E.B., ‘In the twinkling of an Eye’, Bulletin of the Torrey Botanical Club, 77 
(1950), pp. 222-227. 
 
[4] Photograph taken at The Honey Farm, Cheswick, Berwick-on-Tweed, Northumberland. 
 
 
 
 
 
 
 
 



 35 

Chapter 3 
 
history 5:  Kelvin’s problem 
 
William Thomson, Lord Kelvin, the most prolific [1] mathematical physicist of the 
nineteenth century, was born in Belfast but adopted by Glasgow, to whose university he 
devoted his life [2].   
 
Nowadays a ‘model’ usually means a set of equations. To Kelvin and his contemporaries it 
meant a physical system whose properties matched those of the thing you were interested in. 
But to Kelvin himself it also meant something you made. 
 
“I am never content until I have constructed mechanical models of the subjects I am 
studying. If I succeed in making one, I understand; otherwise I do not.” 
 
Earthquake waves travel in rock, sound waves in air, water waves in water. But light waves 
pass through the vacuum of space so in what medium do they travel? All physicists of the 
time could do was give it a name, the aether. The only property they could agree on was that 
it had to be static with respect to a fixed point in space. Kelvin modelled it with pitch. If you 
apply a prolonged force to pitch, it flows like water, modelling the passage of the earth 
through space as it orbits the sun [3]. If you give it a sharp tap, it shatters like glass, 
modelling the aether’s ability to transmit rapid vibrations. But he also constructed a second 
model. If you want to propagate a vibration in one dimension, you use a string; if you want 
to do so in two dimensions, but leave plenty of empty space, you use some sort of mesh or 
net. What do you need in three? The mesh would form the walls of compartments into which 
space was divided. Kelvin envisaged identical compartments and sought the shape which 
would have the greatest volume for its surface area. 
 
Before we study the paper he wrote on the problem [4] and the model he built, we shall 
review what we have already learned. But first we must decide how to rank solids in terms of 
volume and surface area. 
 
calculation 6:  the isoperimetric quotient 
 
We shall start in 2 dimensions.  
 
Until the 1920s the fact that the circle is the shape which encloses the greatest area for its 
perimeter was itself an unsolved problem – though no one doubted that it was the case. If we 
want to know how good other shapes are in this respect we need a measure. We want our 
measure to be dimensionless so we must take the first power of the area and the square of the 
perimeter. For the circle we have: 

area

circumference
2
=

!r
2

2!r( )
2
=
1

4!
. 

To give our measure the value ‘1’ for the circle we must therefore multiply by 4! , giving us 

the ‘isoperimetric quotient’ (I.Q.) 4!
area

perimeter
2

. 

Find this for the square and the regular hexagon. You should get values to 3 significant 
figures of 0.785 and 0.907 respectively. 
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Now we move to 3 dimensions. 
 
We must now relate volume2  and area3 . 

Our ideal solid is the sphere, for which this ratio is 

4

3
!r3"

#$
%
&'
2

4!r2( )
3
=

1

36!
. 

To give the sphere the value 1 our 3-dimensional I.Q. therefore becomes 36!
volume

2

area
3

. 

 
review: 
 
Our ideal solid is the sphere. Unfortunately these do not ‘pack’, i.e. fill space. When packed 
as tightly as possible there are still spaces between them. 
 
In Ch.2 we learned that the best packing of spheres we can achieve is the ‘Kepler’ or f.c.c. 
arrangement. 
 
In the Linking section 2-3 we learned that compression of the spheres in this arrangement 
deforms them into rhombic dodecahedra. 
 
history 6:  Kelvin’s solution 
 
Now we can turn to Kelvin’s paper.  
 
Because the tension forces in the surface of a soap film minimise its surface area, he knows 
that his problem is solved in a soap foam. 
 
Without observing an actual foam, he also knows that it cannot consist of rhombic 
dodecahedral cells for the following reason. Two conditions apply to a foam: 
1. Walls meet in 3s, at the angle dictated by symmetry: 2! / 3  [5]. 
2. Wall edges meet in 4s, at the angle dictated by symmetry, that subtended at the centre of a 
regular tetrahedron by an edge, the angle familiar to chemistry students as the bond angle in 

the methane molecule: arccos !
1

3

"
#$

%
&'

, about 109 1

2

°  [6]. 

The rhombic dodecahedron passes the first test but fails the second since at 6 of its 14 
vertices 4 edges already meet, leaving none to extend into the surrounding space. 
 
However, he sets up the following thought experiment, where we begin by creating just such 
a foam. 
 
He imagines a cubic lattice of wire – the 3-D chessboard of Link 2-3 – with tiny metal 
globes at the centres of the empty cells, the ‘holes’.  
 
He now imagines a soap film to connect the edges of the wire lattice and the globes. 
 
Each foam cell will we know be a rhombic dodecahedron. 
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Before he makes his next move, he reminds us what happens in Joseph’s Plateau’s 
experiment where you dip a cubic wire fame in soap solution and withdraw it [7]: 
 
   
 
 

 
 
We now annul the tiny central globes. Every ‘hole’ in the 3-D chessboard jumps to the 
Plateau configuration. 
 
If the wire lattice is held horizontally so that there is a slight imbalance of force on the frame 
due to gravity, the central ‘squares’ – actually squares with bowed sides as you see - will all 
set themselves in the same orientation (horizontally). 
 
By symmetry we can also annul the wire lattice itself, as the forces on each edge are equal 
and opposite. 
 
This is what we’ve now got. (We’ll continue to put shapes in quotes to show that they are in 
fact versions distorted by the soap film conditions we specified.) Notice how a Plateau 
‘trapezium’ in one cell (shown in blue) pairs with one across the cell edge (shown in a fainter 
blue) to make a ‘hexagon’. Notice how a Plateau ‘right-angled isosceles triangle’ (shown in 
red) pairs with one across the cell edge (shown in a fainter red) to make a ‘square’. But 
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notice also that this ‘square’ is a different size from the one (also shown in red) which 
appeared at the centre of the Plateau cube. 
 

 
 
The resulting polyhedron has 8 equal ‘hexagons’ but 4 ‘squares’ of one size, 2 of another. 
Kelvin imagines this set within the square prism (shown in blue), a ‘square’ (shown in red) 
lying in each face. In terms of the cubic lattice we can work out that the blue prism has a 
height of 2 units, a width of 2  units.  
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He then considers a large cubic section of the lattice formed by such individual prisms. He 
imagines wire to be introduced wherever a soap film cuts the boundary. This enables him to 
consider the net force on an entire wall of this cage. The asymmetry caused by the different 
‘square’ sizes will cause the top and bottom walls to move inwards and the side-facing walls 
to move outwards so that the cage – whose wire boundary we imagine constantly to be 
changing in accordance - becomes a square prism. The small ‘squares’ will grow; the large 
ones, shrink. Equilibrium will be reached when all ‘squares’ are the same size. Our blue 
square prism will become a cube: 
 
   

                                                       
 
Let the cube have edge e . The volume remains the same so we have: 
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e
3
= 2.2

1

2.2

1

2 , whence e = 2
2

3 . 
 
We can name the ‘polyhedron’ which results: it is the truncated octahedron [8]. 
 
Here is Kelvin’s own model – known affectionately to his students as ‘the bedspring model’. 
He’s picked out one cell in white [9]: 
 
 
 

 
 
How does Kelvin’s ‘truncated octahedron’ differ from the truncated octahedron (no quotes)? 
We’ll see how it meets our ‘foam conditions’: 
 
1. Look up the dihedral angles in Cundy & Rollett [10] (p.104).  That between hexagons is 
not 120°  but our ‘tetrahedral’ angle, about 109 1

2

° ; that between a square and a hexagon is 

closer but still wrong: about 125 1

4

° . 
2. The result of changing the interior angles to the tetrahedral angle is that the square sides 
bow out and the hexagon sides bow in. 
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To appreciate the effect of these distortions we must add a third foam condition. If there is a 
pressure difference across a wall of soap film it will curve in proportion. This curvature is 
measured by taking the mean in two perpendicular planes. The curvature is the reciprocal of 
the radius of curvature. If these radii are r

1
,r
2
 in the respective planes, our mean curvature is 

therefore 
1

2

1

r
1

+
1

r
2

!

"#
$

%&
=
r
1
+ r

2

2r
1
r
2

 . In a foam in equilibrium there will be no pressure difference, 

therefore this expression will everywhere take the value zero. It may be that the individual 
curvatures are each zero and you have a perfectly flat piece of film – observe, for example, 
the wall between two bubbles which have coalesced; but it may also  be that the curvatures 
are equal but of opposite sign so that you have a saddle. It turns out that the ‘square’ faces of 
Kelvin’s solid are flat but the ‘hexagonal’ faces are shaped as follows, each point being a 
saddle point. 
 



 42 

OH

OH

A

B

B
A

OS

OS

  
 
In the figure we’re looking on to a particular such face. The vertices and the diagonals (all 
shown in red) lie in the same plane. Each ‘hexagon’ is bordered by alternate ‘hexagons’ and 
‘squares’. We’ve just shown the ‘squares’. (In the foam 2 ‘hexagons’ and 1 ‘square’ meet in 
each edge.) Were all the faces regular polygons, a section through a hexagon centre and a 
square centre perpendicular to an edge would look like O

H
BO

S
 in the inset figure top left. 

However, the edge of a ‘square’ face is the arc of a circle (such that the tangents at a corner 
of the square meet at the tetrahedral angle). We must therefore curve the line O

H
B  into O

H
A  

(shown in blue). The result is that alternate sextants of the original hexagon assume a 
trumpet shape. The beautiful thing is that, matching this set (shown in blue), is an identical 
set of depressions (shown in green). 
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experiment 4:  our own bedspring model 
 
We don’t need Kelvin’s dexterity with wire and solder now. We have ‘Orbit’ [11]. This kit 
has connecting pieces with pegs sticking out ‘tetrahedrally’ and plastic straws to join them. 
Here is part of a Kelvin foam modelled with Orbit. On the left we look down ‘square’ 
tunnels; on the right, ‘hexagonal’ ones: 
 

 
 
history 7:  Matzke again, Weaire and Phelan 
 
Kelvin’s solution remained unchallenged until 1993, when two Irish physicists, Weaire and 
Phelan, showed that, if they were allowed to use two cell shapes instead of one, they could 
design an aggregate which partitioned space more efficiently [12]. You can now explain the 
title of this piece. The nicknames are not mine but those of John Horton Conway [13]. 
 
But we won’t leave Kelvin quite yet: 
 
“Blow a soap bubble and observe it. You may study it all your life and draw one lesson after 
another in physics about it.” 
 
What do we find when we look into an actual foam? Put a little soapy water in a large glass 
vessel and blow into it with a drinking straw. (A little glycerol will help stabilise the foam.) 
You will realise immediately how hard it is to make quantitative observations (experiment 
6). However, the botanist E.B.Matzke, whom we’ve already met, did so and by the simplest 
means [14]. He used a dissecting microscope fitted with a camera lucida. With this he could 
pick out and draw one bubble from a mass of 1,800. The camera lucida is a simple drawing 
aid – I’ve had one since a child – consisting of a semisilvered mirror set at 45°  which 
superimposes the scene and your drawing surface. Matzke took great care over the 
composition and preparation of his soap mixture, resulting in very stable foams. He also 
formed the bubbles individually with graduated syringes. He conducted one set of 
experiments with bubbles of 110cm3  and another with those of half that volume, the idea 
being to check that scale played no part in determining the cell shapes.  
 
His typical bubble had 13 faces: 1 of 4 sides, 10 of 5 sides, 2 of 6 sides. 



 44 

 
Kelvin’s theoretical cell is of course different. It has 14 faces: 6 of 4 sides, 8 of 6 sides. 
 
However, if you’ve performed the Plateau experiment, you’ll know that the small central 
‘square’ can set itself in any of 3 orientations. Spontaneous jumps into new configurations 
achieving local energy minima in a Kelvin foam may result in a ‘trapezium’ meeting a 
‘trapezium’ to form a ‘hexagon’ at one point, but a ‘triangle’ meeting a ‘trapezium’ to make 
a ‘pentagon’ at another. 
 
From this point on we’ll drop the convention of distinguishing the shapes of soap walls and 
cells from their flat, straight-edged cousins by putting them in quotes. I hope the case 
intended will be clear from the context.  
 
Weaire and Phelan didn’t blow bubbles. They studied the crystalline structure of certain 
metal alloys [15]. A compound has a fixed composition but an alloy is a mixture: you can 
vary the proportion of different components. It therefore provides a laboratory in which 
different packings can be observed. For the most part there are steady changes in packing 
structure as you vary the chemistry. But there are anomalies, warning that Weaire and Phelan 
may not have spoken the last word on Kelvin’s problem. With the future of your own 
students in mind, that’s just what you want. 
 
experiment 5:  our Irish bubble 
 
To build the Irish bubble you need to know: 
 
(a) The shape of each of the two cells.  
 
Download nets for flat-faced approximations from Guy Inchbald’s site [16]. Here 
respectively are the Weaire-Phelan dodecahedron and tetrakaidecahedron modelled with 
Orbit: 
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Make measurements on Guy Inchbald’s nets. You’ll find the edges are of 3 different lengths: 
the dodecahedron uses 2 of them; the tetrakaidecahedron, all 3. The length of the straw 
supplied is around 29.5 mm. This (+5.0 mm for the connectors) must be your longest edge 
(shown white above). Though you can’t aim for anything like this accuracy, you’ll need to 
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cut the remaining 2 to: 21.8 mm (left unmarked above) and 10.3 mm (shown red. The pegs 
don’t allow the pieces to bend in the immediate vicinity of a vertex. In the case of the 
shortest piece, the result is that it springs out. In the case of the complete translation unit, 
shown below, we’ve cheated by making this piece 50% longer than it should be.)  
Applying simple proportion to work out the lengths is a useful exercise in itself, but more is 
involved:   
- working out from a net you’re not going to fold how the faces fit together (though if in 
doubt you can always experiment with paper); 
- finding the planes of mirror symmetry and the axes of rotation symmetry for each solid:  
 
(i) The dodecahedron. 
 
The faces of the dodecahedron are congruent pentagons. Each pentagon has one long side. 
An axis of symmetry runs at right angles to this. The symmetries of  this irregular form and 
the regular pentagonal dodecahedron are readily compared by considering both as cubes with 
a ‘house roof’ on each face. In the regular form we’re free to choose the 8 vertices forming 
the cube. Here, the long edges are the roof ridges so there’s only one such cube. The space 
diagonals of this are the axes of 3-fold rotation symmetry of the dodecahedron. A 2-axis runs 
through the mid-points of opposite house roofs (and through no other edges). The long edges 
define 3 orthogonal planes of symmetry and (as with the regular form) lie in the faces of a 
cube.    
 
(ii) The tetrakaidecahedron 
 
The two parallel, hexagonal faces of the tetrakaidecaheron, through whose two symmetry 
axes run its two planes of symmetry, are set at right angles. To each long side is attached a 
face of the type characterising the dodecahedron. To the remaining four sides (of the 
common, middle length) are attached pentagons in which a long(est) side is replaced by a 
short(est) side, retaining the symmetry axis of the former type. These are arranged 
symmetrically so that the whole ‘crown’ belonging to one hexagon is congruent with that 
belonging to the other. There are three axes of 2-fold rotation symmetry: one passes through 
the centres of opposite hexagons; the other through the mid-points of opposite shortest edges. 
 
Here we show representative rotation symmetry axes for the pair, and the dodecahedron’s 
inscribed cube: 
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(b) How the cells fit together in the aggregate.  
 
Ken Brakke shows you [17]. 
Brakke’s name appears in [15] in connection with his program ‘Surface Evolver’. I e-mailed 
Professor Brakke to ask him how it dealt with the partition of space [18].   
  
You’ll have to decide whether just to grow the aggregate or, more wastefully, mass-produce 
cells and take out common pieces where they join. 
 
You may of course prefer not to build a skeleton structure at all but abandon Orbit for stiff 
paper and use Guy Inchbald’s nets as intended [19]. Here are Orbit and paper dodecahedra 
for comparison: 
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The paper model has one advantage: your class or maths club can mass-produce cells – and 
do so cheaply - so that the way the aggregates of 8 fill space becomes apparent. 
 
You may also, however, decide to use both materials. 
 
There are only two kinds of vertex: in one, three edges of medium length meet one of the 
shortest; in the other, three edges of medium length meet one of the longest. In other words, 
the nearest neighbours of a given vertex form a regular tetrahedron which is either squashed 
along one altitude or stretched along one. 
 
Here is the aggregate, the cells (with the approval of [13]) represented as cubes: 
 

  
 
The 3 colour-pairs (black-grey, red-pink, dark green-light green) show the 
tetrakaidecahedron pairs, which are arranged back-to-back. In the cube edges picked out in 
white lie the long edges of the dodecahedron which fits there. (See (a)). The second 
dodecahedron fits behind. You have to realise, however, that the equal cube dimensions are 
not to be found in the individual tetrakaidecahedra: it is the symmetry of the whole complex 
which allows this representation.   
 
To model the whole array, all you have to do is to make many long sticks of cubes of 3 
kinds: black-grey alternating, red-pink alternating, dark green-light green alternating, and 
pack them orthogonally, just like the individual pairs shown in the picture. These are the 
tetrakaidecahedra. You then imagine the dodecahedra filling the spaces (again, see [13]). 
This picture shows how the cubes representing the dodecahedra (yellow) join corner-to-
corner – though the dodecahedra themselves are separated by the shortest edge of a 
tetrakaidecahedron. The cubic unit cell for the whole 3-D lattice has a long diagonal equal 
to twice the sum of this shortest length plus the space diagonal of the dodecahedron’s 
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inscribed cube. It has an edge equal to the thickness of a back-to-back pair of 
tetrakaidecahedra.   
 

  
   
Here is a complete translation unit, modelled with Orbit. You are looking down an axis of 3-
fold rotation symmetry, as in the (Multilink) cube model: 
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Here it is again, shown alongside the corresponding card model. Hexagonal faces are picked 
out. The white dots mark vertices on the long axes of the hexagons, where one joins another, 
(belonging necessarily to another tetrakaidecahedral stack). Contingent hexagons lie in 
perpendicular planes so that they’re strung out along a line like Christmas streamers: 
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calculation 7:  the Scottish v. the Irish solutions 
 
The time has come to compare the Kelvin and Weaire-Phelan models. We do so against the 
statistically ideal cell dictated by the ‘foam’ conditions, following Stevens’ treatment [20].  
 
1) We suppose this cell has v  vertices, e  edges and f  identical faces. 
 
3 faces, each of interior angle ! 109.47° , meet in a vertex. The angle defect there is therefore 
! 360

°
" 3 109.47( )

° . 

Since the total angle defect is 720° , v !
720

360 " 3 109.47( )
! 22.79 . 

Let the number of edges – and therefore also vertices - per face be ef . We can write the 
angle sum of our polygonal face in two ways and set them equal: 

180(ef ! 2) " 109.47ef , whence ef !
360

180 "109.47
! 5.104 . 

We have e  itself by summing over the f  faces, remembering that 2 faces share an edge: 

e =
1

2
ef f ! 2.552 f . 

We now substitute in Euler’s polyhedron formula and solve for f : 
v + f = e + 2 . 
22.79 + f ! 2.552 f + 2.

f !
22.79 " 2

2.552 "1
! 13.39.

 

Note the reappearance of our near neighbour number. 
 
From above, e ! 2.552 f ! 2.552 "13.39 ! 34.17 . 
 
(Though we have applied Descartes’ angle defect formula and the Euler polyhedron formula 
at separate stages in this derivation, the first can be derived from the second – as Euler 
himself did [21].) 
 
2) The Kelvin solid has 6 square and 8 hexagonal faces, thus f = 6 + 8 = 14 . 
We find e  just as we did above: 

e =
6 ! 4( ) + 8 ! 6( )

2
= 36 . 

Since 3 edges share a vertex but 2 vertices share an edge, v =
2e

3
= 24 . 

(We can check that number by substituting our f  and e  values in Euler’s formula.) 
 
3) For the Weaire-Phelan aggregate we must form the weighted mean of the two cell types: 

f =
1!12( ) + 3!14( )

1+ 3
= 13.5 . 

e =
1! 12 ! 5( )"# $% + 3! 12 ! 5( ) + 2 ! 6( )"# $%

2 1+ 3( )
= 34.5 . 
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v = e + 2 ! f = 34.5 + 2 !13.5 = 23 . 
 
Note that for the purpose of this analysis we have treated the two cell types as if they are 
distributed at random through the lattice. Their aggregation in the periodic arrangement 
prescribed by Weaire and Phelan has not entered into our calculation. 
 
4) We now bring those results together: 
 
 v  f  e  

ef =
2e

f
 

The statistical ideal 22.8 13.4 34.2 5.10 
The Kelvin model 24.0 14.0 36.0 5.14 
The Weaire-Phelan model 23.0 13.5 34.5 5.11 
 
We see that in a Weaire-Phelan foam there are rather fewer vertices, faces and edges per cell 
than in a  Kelvin foam and that these figures fall closer to the statistical ideal. 
Looking in particular at f , we note good agreement not only with our theoretical ‘near 
neighbour number’, derived first in Ch. 2 and independently above, but also with Bernal’s 
experimental finding (reported in Link 2-3).  
 
All our averaging out conceals the discrete observation apparent from the models: the 
majority of the faces in the Kelvin model are hexagons, the rest squares; the vast majority in 
the Weaire-Phelan model are pentagons and there are no squares. 
 
experiment 6:  a real foam 
 
Now’s the time to return to your home-made foam in the glass vessel. You have to look a 
few layers in, not to be misled by edge effects, but two things should strike you. The first, as 
expected, is the adherence to the ‘foam’ conditions (the ‘wall’ condition is the more obvious 
to the eye). The second is the preponderance of pentagons. Clearly then real foams are not 
very Kelvinian. But how Weairephelanian are they? 
 
 
 
 
 
Notes 
 
[1] The greatest in terms of influence on the physics of the next century is indisputably a 
younger Scottish contemporary, Clerk Maxwell, but no one published as much and so widely 
as Kelvin. As a physicist he averaged 2 papers a month for half a century. As an engineer he 
filed 67 patents. 
 
[2] Visit http://en.wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin . 
 
[3] The Michelson-Morley experiment suggested that, to the contrary, whatever the aether 
might be, it stuck to the earth. In a lecture Kelvin acknowledged that the result cast a “dark 
cloud” over contemporary physics. Einstein famously removed an absolute frame of 
reference altogether and this anomaly with it.  
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[4] ‘On the Division of Space with Minimum Partitional Area’, Philosophical Magazine, vol. 
24, no. 151. 
 
The year Kelvin published this paper was also the year he abandoned the aether theory 
altogether, as attested by this entry in one of his famous green notebooks regarding the 
Michelson-Morley experiment: “The result of the hypothesis of a stationary ether is shown to 
be incorrect, and the necessary conclusion follows that the hypothesis is erroneous.” 
 
For a historical survey of the aether concept and its demise go to 
http://en.wikipedia.org/wiki/Luminiferous_aether .  
 
[5] calculation 8:  justifying the ‘2-D’ foam conditions 
 
We need to know two things: 
(a) why soap films meet at equal angles, 
(b) why they do so in 3s. 
 
(a) We work in terms of bands of soap. (If we fit spacers between a pair of parallel perspex 
plates, dip the model into soap solution then withdraw it, such ribbons will connect the 
spacers.) 
 
When we stretch a rubber band, the force we need increases as the band gets longer. This is 
not so with a band of soap. 
 
Here is a band of soap of width w cm. 
In the first diagram we pull with a force F

1
 through a distance d  cm.  

 

w

d

F1

 
We have added an area dw cm 2 . Each cm 2  added increases the potential energy of the band. 
Call this increase E . We have achieved this by doing work: moving the force F

1
 through the 

distance d . Work done = F
1
d = potential energy gained = E . 

 
In the second diagram we pull with a force F

2
 through a further distance d . 

The increase in energy is just the same as before so we can write F
2
d = E . 

 

w

d d

F2

 
 
But F

1
d also equals E , so F

1
= F

2
. In other words the force stays the same. 

 
Since each band is subject to the same force, symmetry dictates that, for the edge in which 
they join to remain in equilibrium, the angles between adjacent bands must be equal. Thus, 
where 3 meet, they do so at angles of 2!

3
. 
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(b) We start from the observation that soap films minimise their surface area. Since the 
bands under consideration are of constant width, their total length will be a minimum. We 
can therefore work in terms of a cross-section parallel to the imagined perspex plates. 
Consider 4 bands from the edge O  to spacers A,B,C,D  at unit distances from it: 
                                                                                                     
                                                   D                    C 
 
                                                                
                                                            O     
 
 
                                                          A          B 
 
If 4 lines meet in a point, at least 2 angles must be < 2!

3
. Take one of these, 

!AOB = " = 2# . 
In the top left figure below we compare the sums of the lengths AO + BO = 2  and 
AP + BP + PO = 2r + s , where !APB = !BPO = !OPA = 2"

3
. 

Let d = 2 ! 2r + s( ) = 2 ! 2r ! s . 
If d > 0  we know that the soap film will abandon the configuration AO,OB  and adopt the 
configuration AP,BP,PO , reducing the number of lines meeting in O  to 3. 
 
We can measure off r  on AO,BO  so that, rearranging the above expression, we have 
d = 2 1! r( ) ! s . 
Here is the angle-chasing we must do in order to work out the angles in triangle POT . 
(Notice that triangle APT  is isosceles.) 
 
 
 
 
 
 

s

r

r

1-r
!

A B

O

P

T

T

P

O

s

1-r
!

2"/3

!

"/3#!

A

O

P

r

A

T

P
r

"/3+!/2

2"/3#!/2

"/3#!/2
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We now use the Sine Rule in triangle POT : 

s

sin 2!
3
"#
2( )

=
1" r

sin !
3
"#
2( )

!1" r = s
sin #

3
"$
2( )

sin 2#
3
"$
2( )

. 

Hence d = 2(1! r) ! s = 2s
sin "

3
!#
2( )

sin 2"
3
!#
2( )

! s , which simplifies to: 

s

cos!
2
" 3sin!

2

cos!
2
+ 1

3
sin!

2

. 

If 3sin!
2
< cos!

2
, i.e. tan!

2
< 1

3
,!
2
< arctan 1

3
,!
2
< "

6
,# = 2! < 2"

3
, 

then d > 0 . 
But we know that !  is < 2!

3
, so d  is > 0  and the soap band will adopt the configuration 

AB,BP,PO , reducing the number of bands meeting in O  to 3. 
 
[6] experiment 7:  justifying the ‘3-D’ foam conditions 
 
We assume that what goes for the uniform bands of film in [5] goes for flat extended films: 3 
meet in an edge at 2!

3
. 

We can do an experiment to understand the symmetry this imposes where edges themselves 
meet. (You may, if you prefer, perform this as a thought experiment.) 
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Apparatus:     

θ

 
 
4 120°  trigonal prisms made by folding 3 sheets of A4 card width-ways and sticking them 
together like the red, blue and green sheets shown. 6 paper clips. Each prism represents 3 
walls of soap meeting in an edge. 
 
Test: Fit 2 prisms together so that a pair of walls merge – the corresponding sheets slide over 
each other. You can vary the angle !  and fix the prisms together with a paper clip. But in 
order to fit a 3rd prism to these two you find you have to adjust !  to a special value. When 
you’ve found this, fix the 3rd prism in place with paperclips, one for each pair of overlapping 
sheets. You now find that the 3 prisms in place allow a 4th to be added without any further 
adjustment. Secure each of the 3 overlapping pairs of sheets with paper clips.  
 
Observation: The final model has the greatest possible symmetry.  
There are 6 walls. Each defines a plane of symmetry.  
There are 4 edges. Each defines an axis of rotation symmetry of order 3. Each lies at the 
intersection of 3 planes of symmetry. 
Every pair of edges makes an equal angle – about 109 1

2
° . We shall calculate the exact value 

of ! . 
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calculation 9:  the tetrahedral angle  
 

!

"

 
 
The red lines divide the tetrahedron into 4 congruent pieces. 
Each must therefore have 1

4
 the volume of the whole. 

Since this is proportional to height, the blue height must be 1
4

 of the total height. 
The blue height therefore stands to the red length as 1 : 3 . 
This gives us the cosine of angle  !  

and !  is the supplement of this = arccos ! 1
3( ) . 

 
 
experiment 8:  the tetrahedral angle from a sheet of A4 
 
The first pair of figures below shows a simple way of producing this angle. 
 
Take a sheet of A4. Fold P  on to P ' . 
Show that the red angle is !  by inserting the folded sheet into the above  
apparatus. 
 
 
 
calculation 10:  justifying the paper-folding construction 
 
We now find out why this works. 
 
The last figure on the first line shows the folded sheet and the ghost of the original. 
Look at the sequence of 4 figures on the second line. 
 
First figure: 
If the left-hand angle is ! , so is the right-hand angle by the symmetry of the fold. 
 
Second figure: 
If the left-hand angle is ! , so is the right-hand angle (alternate angle between parallel lines). 
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Third figure: 
Therefore ! = 2" . 
 
Fourth figure: 
But from the proportions of a sheet of metric paper ! = arctan 2( )  

!" = 2# = 2arctan 2( ) = arctan
2 2

1$ 2( )
2

%

&
'
'

(

)
*
*
= arctan !2 2( )  or 

arccos !
1

1+ 2 2( )
2

"

#

$
$

%

&

'
'
= arccos !

1

3

"
#$

%
&'

. 

 
 
 

P

P’

!

!

!

! 2!
!

2

1

 
 
[7] The model here uses Zome Tool. Go to http://www.zometool.com . 
 
 
[8] calculation 11:  isoperimetric quotients for the truncated octahedron and 
the rhombic dodecahedron 
 
Comparing the I.Q.s for the truncated octahedron itself (i.e. the one with planar faces) and 
the rhombic dodecahedron makes a good exercise – though we can guess from Kelvin’s 
argument which one is going to come out on top.  
The rival solids dissect into convenient shapes. 
 
(a) The truncated octahedron 
 
If you halve a cube with a slice through the midpoint of a space diagonal (also an axis of 3-
fold rotation symmetry) and perpendicular to it, you can assemble 8 such pieces into a 
truncated octahedron. (You see from this dissection incidentally why the shape packs.) 
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Working in terms of unit cubes, we have a volume therefore of 8 x 1

2
= 4 units. 

 
The area of each triangle is 1

8
 of a square face = 1

8
 of a unit. 

We have 6 x 4 = 24 of these, giving a total area of 24 x 1
8

 = 3 units. 
Each hexagon is made up of 6 equilateral triangles, each with an edge of 1

2
 units. 

The area of each is therefore 1
2

 x 1

2
( )

2

x sin(!
3
)  = 3

8
 units. 

There are 8 hexagons, giving an area of 8 x 6 x 3

8
 = 6 3  units. 

So the total area = 3+ 6 3 = 3 1+ 2 3( )  units. 

Our I.Q. = 36!
volume

2

area
3

= 36!
4
2

3 1+ 2 3( )"
#

$
%

3
. 

The part after the ' 36! '  = 6.66 x 10!3  (3 S.F.).  
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(b) The rhombic dodecahedron 
 
As we have already seen, if you split a cube into 6 pyramids with apices at its centre and 
stick one on each face of a like cube, you have a rhombic dodecahedron: 
 

 
 
 
Working in terms of unit cubes again, we have a volume this time of 1 + 6 x 1

6
 = 2 units. 

The area is 6 x 4 = 24 x that of a pyramid face. 
Since each such triangle has an altitude half a face diagonal of the cube, it has an area of 1

2
 x 

1 x 1

2
. 

The total area is therefore 24 x ( 1
2

x 1 x 1

2
) = 6 2  units. 

We feed the volume and area values into our I.Q. expression and find that, this time, the part 
after the ' 36! '  = 6.55 x 10!3  (3 S.F.). 
 
So (a) wins, as expected. 
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[9] Photograph taken in the recently-enlarged Kelvin gallery in the Hunterian Museum, 
Glasgow (‘Kelvin Revolutionary Scientist’).  Go to 
http://www.hunterian.gla.ac.uk/whatson/whatsOnitem.php?item=1 . 
 
[10] Cundy, H.M. & Rollett, A.P. (1961), Mathematical Models, 3rd ed. 1981, Tarquin 
Publications, Norfolk. 
 
[11] Go to www.cochranes.co.uk/show_category.asp?id=43 . 
Choose the ‘Orbit Basic Structures Class Set’ (ref. 0046). 
  
[12] See Thomas, R. (2008), ‘Swimming in Mathematics’, 
http://plus.maths.org/latestnews/sep-dec08/watercube/ . 
 
[13] Burgiel, H., Conway, J.H., Goodman-Strauss, C. (2008),  
The Symmetries of Things, A.K.Peters Ltd., p. 332, p. 333 fig. 23.5, p. 351. 
 
(In fact both Kelvin and Weaire came from Belfast.) 
 
[14] Matzke, E.B. (1945), ‘The Three-Dimensional Shapes of Bubbles in Foams’, 
Proceedings of the National Academy of Sciences, vol. 31, no. 9, pp. 281-289. 
 
[15] The following paper will be of equal interest to chemists, metallurgists, materials 
scientists and mathematicians since the authors explain all their terms as they go along: 
Kusner, R. & Sullivan, J.M., ‘Comparing the Weaire-Phelan Equal-Volume Foam to 
Kelvin’s Foam’. You can download it as: 
http://torus.math.uiuc.edu/jms/Papers/foams/forma.pdf  
simply by clicking on the relevant entry on the first Google page. 
 
[16] Go to http://www.steelpillow.com/polyhedra/wp/wp.htm . Go to the bottom of the page 
and click on ‘dodecahedron’ and ‘tetrakaidecahedron’ respectively. 
 
[17] Go to http://susqu.edu/brakke/kelvin/Kelvin.html . 
 
[18] Here is my question and his answer: 
 
“… Am I right in thinking your ‘Surface Evolver’ software is a computer equivalent to the 
analogue solution of such problems by soap films? …” 
 
“… Yes, my Surface Evolver does computer simulations of soap films. On the most basic 
level, all you have to understand is that the surface is made up of triangles, and the total area 
is just the sum of the areas of all the triangles. The surface tension is a force trying to shrink 
the area, and Evolver just calculates how that force wants to move the triangle vertices to 
shrink area, with the pressure in the bubbles providing an opposing force. If you can explain 
to your students why soap bubbles are round, then you can explain what my Evolver is 
doing. …”   
 
[19] To glue the tabs use a petroleum-based adhesive like Evostik. Let the glue get tacky so 
that, when you bring the surfaces together, you get an instant bond and previously glued tabs 
don’t pop open as you proceed. 
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[20] Stevens, P.S. (1974), Patterns in Nature, Little, Brown and Company, notes to ch. 7, p. 
231. 
 
[21] calculation 12:  from Euler’s formula to Descartes’ 
 
Let a polyhedron have p  faces with l  sides, q  faces with m  sides, and so on. f = p + q + ...  
. 

e =
pl + qm + ...

2
 . 

v = e + 2 ! f =
pl + qm + ...

2
+ 2 ! (p + q + ...)

=
p(l ! 2) + q(m ! 2) + ...+ 4

2
.

 

 
The interior angle sum of an n ! gon is (n ! 2)" , so the total,  
S , of all the interior angle sums for the polyhedron is  
p l ! 2( ) + q(m ! 2) + ..."# $%& . 

 
We now combine our ‘v ’ and ‘S ’ formulas: 
2!v = p l " 2( ) + q m " 2( ) + ...+ 4#$ %&! = S + 4! . 

So S = 2! v " 2( ) . 
 
The total angle defect, D , is the sum of the ‘2! ’s for all v  vertices less S , 
i.e. D = 2!v " S = 2!v " 2! v " 2( ) = 4! .  
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Conclusion 
 
We have looked at three different problems. 
 
In Chapter 1 we investigated how far apart we could set n  points on a sphere. 
In Link 1-2 we took the case n = 12  and worked out the near neighbour number (about 
13.4), which we thought might help us with the problem set in Chapter 2: how tightly you 
can pack equal spheres. It didn’t. But the number cropped up in Link 2-3, where we studied 
what happens when you crush the spheres together. This prepared us for Chapter 3, where 
we sought the partition of space into cells which had the greatest volume for their surface 
area. 
 
The consensus is that the problem set in Chapter 2, the ‘Kepler’ problem, is solved. 
One cannot say the same of the problem set in Chapter 3, the ‘Kelvin’ problem. Weaire and 
Phelan changed the rules by allowing a second cell shape and forming an aggregate of the 
two. Who is to say that a future mathematician may not find a superior solution by 
aggregating 3 or more? 
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Notes 
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