
 The Dynamic Geometry of Sightseeing: Part 1 
 
In [Robin, 2013] Tony Robin invites us to investigate the different orders in which landmarks 
appear when viewed from different positions. He shows how lines of sight divide a map into 
regions in each of which the landmarks appear in a different order. When you cross a line, you 
switch (transpose) the 2 symbols lettering the points on it. 
 
Introduction 
 
For your KS5 students, counting the regions is an exercise in combinations. 
They will only need to use these explicit formulae: 
 
nC2  (n-choose-two: how many choices of two things can be made from n?):  
n(n −1)
2!

 
nC4  (n-choose-four: how many choices of four things can be made from n?): 
n(n −1)(n − 2)(n − 3)

4!
 

 
… and know where to find them on Pascal’s Triangle: 
 

    
 
 
I shall not attempt to consider cases, flagged up by Tony, where vertices lie on parallel lines, 
nor those where more than 2 are collinear, nor those where more than 2 lines intersect at points 
other than the polygon vertices.  
 
I shall have much to say about landmarks defining convex polygons but precious little about 
other arrangements. Perhaps your students can find more. If not, they only need wait for the 
next issue of Mathematics in School, where, with Tony’s help, we show how, by going back to 
the start and using an iterative procedure which takes no account of the precise arrangement of 
the landmarks, you can tackle the general case. 
 



For KS 2/3 children the topic would seem to offer (… meaning I haven’t tried it) scope for 
‘people’ maths. All that’s needed is a playground, some volunteer ‘landmarks’ and a child with 
a camera(/mobile/i-Pad/…). Of course, the experiments will only have point if  (on the basis of 
sketches, mental images, …) the children first make predictions. ‘Fun’ maths is fun in 
proportion to the amount of mathematical thinking it calls for. 
 
Counting the regions produced by convex polygons 
 
Fc(n) 
 
In Tony’s first example the landmarks, shown here in blue, lie at the vertices of a convex n-gon. 
Within this we cannot see all the landmarks at once, so we must move outside. From each 
vertex (n – 1) lines emerge, creating n ’neighbouring’ regions, (those which touch the polygon 
at one or two vertices; other regions we call ‘remote’.) Adjacent vertices share a region so the 
total number of neighbouring regions is n(n – 1).  
 

                                               
   
 
Each set of 4 vertices constitutes a quadrilateral. Each of the 2 pairs of opposite sides converges 
to create a remote point of intersection, and therefore a new region, shown in red. 
 



 
 
 
 
 
This gives 2 nC4  more regions, and the following grand total. (The F stands for fixed camera, 
the suffix c for convex polygon.)  
 
Fc(n)  = n(n −1)+ 2 nC4 = 2

nC2 +
nC4⎡⎣ ⎤⎦  regions,     (1) 

 
and therefore orders in which the landmarks are seen. 
 
Moving around on such maps 
 
It’s instructive to watch how Tony’s algebra works as you move around.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
The vertex C shares neighbouring regions 1 to 4. Moving round it anticlockwise, we have:  
 
DABC DACB DCAB CDAB   
 
The effect of the 3 transpositions, taking you straight across the vertex, is to cycle the sequence 
one place. Because we shall always have n symbols and (n – 1) transpositions, the result 
generalises to other n-gons. 
 
The green crossing-point shares 3 neighbouring regions, 3, 4 & 5, and 1 remote one, 6. The 
region 7 on the far side of the polygon shares the same pair of lines. Moving from 7 to 4 to 6, 
we have:  
 
ABCD CDAB DCBA 
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The first operation cycles the sequence 2 places. The second transposes 2 pairs. The combined 
operation reverses the sequence. But I’m afraid the only general observation we can make is 
this: if you draw parallel lines through the vertices (east-west, say), choose one, and move far 
enough along it east and west respectively, the landmarks will appear in the reverse order. The 
effect would be the same if you printed the figure on acetate and read it from the back. 
 
 
 
 
 
Counting the regions when the camera can make a 3600 ‘panning’ shot 
 
Ic(n) 
 
If the camera can observe a complete panorama, we must include the Ic(n)  regions ( ‘I’  for 
‘interior’) inside the polygon. Christian Blatter [Blatter, 2012] gives us a neat way to count 
these using the Euler formula. We don’t want the exterior region so our …  

 
f regions = e edges – v vertices + 1.      (2) 
 
v  comprises the n  boundary points and the nC4  interior points - nC4 because each set of 4 
boundary points is responsible for a pair of lines which meet in the point:  
 

                                                      
 
so v = n + nC4 points in all.       (3) 
 
2e (the ‘2’ because we count each edge twice, once at each end) comprises (n – 1) 
sides and diagonals from each of the n boundary points and 4 from each of the interior points,   
 
 

                                                      
 



 
so 2e = n(n −1)+ 4 nC4 = 2

nC2 + 2
2C4⎡⎣ ⎤⎦  

and e = half this, nC2 + 2
nC4 .       (4) 

 
Putting (3) and (4) in (2) gives  
  
Ic(n)  = f  =  e – v + 1 = nC2 +

nC4 − n +1.     (5) 
 
So, adding (1) and (5), the grand total, Pc(n)  (‘P’ for ‘panning’ or ‘panorama’) is given by  
 Pc(n) = Fc(n)+ Ic(n) = 3[

nC2 +
nC4 ]− n +1 .     (6) 

 
Notice these relations: 
 
There is 1 interior point for every 2 remote points, and therefore remote regions. 
There is 1 polygon edge (side or diagonal) for every neighbouring region. 
Fc(n) = 2Ic(n)+ 2(n −1).
Pc(n) = 3Ic(n)+ 2(n −1).  
 
If the vertices are concyclic, and you add to Ic(n)  the n regions between the inscribed polygon 
and the circle, you have the formula for the number of regions in a circle produced by joining n 
points lying on it, nC2 +

nC4 +1, notorious because the sequence runs 1, 2, 4, 8, 16, 31, … .  
 
One last observation. Imagine moving so far out from the polygon that, when you make a 
complete circuit, every region you pass through is infinite (unenclosed). Each time you cross a 
line, you enter a new region. But you cross each line twice. There are therefore twice as many 
infinite regions as lines. Since there is a line through each pair of vertices, there are nC2  lines, 
therefore 2 nC2  infinite regions. That the number of infinite regions and the number of 
neighbouring regions is the same, is no coincidence. The lines bordering a neighbouring region 
either diverge, thus producing an infinite region, or converge, thus producing a remote region, 
and remote regions are infinite. 
 



 
 
 
 
Your students may check counts given by the formulae against Tony’s map for n = 4 and their 
own for bigger n. 
 
   n    1    2  3     4     5     6    … 
    
   Fc(n)   0    2    6   14   30   60    … 
   Ic(n)   0    0  1     4   11   25    ... 
 
   Pc(n)     0    2  7   18   41   85    … 
 
Counting the regions produced by polygons, whether convex or not 
 
But the landmarks may not be so obedient as to form a convex polygon, and non-convex 
polygons are lawless: there may be many ways to join the dots. Thus we come to Tony’s second 
example.  
 
We’ll adopt a couple of approaches to the problem, hoping to find a property that will 
generalise. 



 
We drop the suffix ‘c’ to show that we’re dealing with polygons in general. 
 
1st  Approach 
 
With 3 landmarks there are no remote regions and all 3! = 6 views are represented. 
Put a 4th point D inside the triangle ABC and imagine making a complete circuit of the group. D 
is always framed by the other letters so cannot appear to left or right but must fall between both 
the first pair and the second: 
 
A D B C B D C A C D A B C D B A B D A C A D C B 
A B D C B C D A C A D B C B D A B A D C A C D B 
 
This gives us a check on the number arrived at by another method but this is all, since we know 
from Tony that not all n! orders are represented for n > 3 [note 1]. 
  
2nd Approach 
 
Using Geometer’s Sketchpad, construct the first, convex figure but then drag one vertex, D, 
across a diagonal, thus producing a non-convex quadrilateral. Colour the lines passing through 
D so that you can see what happens to them. Here we colour the 2 remote crossing points green. 
 

 
 
What we notice is that the green points now lie in the sides of the polygon. We know they must 
appear somewhere because opposite sides are defined for all quadrilaterals, whether convex or 
not: they’re the sides which don’t share a vertex. So our 2 4Cn  so-called ‘remote’ points will 
always contribute to F(n) and P(n).  
 
But what happens to the n(n – 1) neighbouring regions? This is the point at which I get stuck. 
But there’s a prior question: Is there a unique F(n) and P(n)? I(n) certainly has no meaning 
beyond n = 4. Your children may, like me, draw a number of sketches without ever being sure 
that they are not – in whatever way – special cases.  
 

D

D



Clearly we must find a different approach altogether. This is what, with Tony’s help, we will do 
in the next issue. 
 
 
Photogrammetry 
 
These questions are interesting but academic. However, if we ask questions like, “What do 
these photographs tell me about the landscape?”, i.e. “How do points on the photograph map on 
to points on the ground?” (a 1-to-many mapping since we’re going from 2 dimensions to 3) or 
“What programs can I apply to reconstruct the landscape from my photographs?”, we’re into 
the important science of photogrammetry. Going back sixty years, the best you could do was 
take photographs from two positions and view the pair in a stereoscope. As you can imagine, 
the computer has changed all that. Nevertheless, the geometry behind photogrammetry and 
traditional surveying is the same [note 2]. 
 
References 
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Notes 
 
1. There is one case where they are, but the landmarks move! Following Galileo, you can see 
the 4 biggest moons of Jupiter with quite a small telescope, strung out along a line. Since there 
is no rational relation between their angular speeds round the planet, they can appear in any 
order.  
 
2. Look for instance at: www.geodetic.com/v-stars/what-is-photogrammetry.aspx . 
 

  
 The Dynamic Geometry of Sight-seeing: Part 2 
 
This short series was prompted by [Robin, 2013], in which the following question was posed: In 
how many different orders do n landmarks appear when viewed from all possible positions? In 
Part 1 answered the question for cases where the landmarks formed a convex polygon. I 
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distinguished the  views possible with a fixed camera and the  views where the 
camera pans through 360 . 
 
But my argument cannot be applied to the  F(n) and P(n) cases respectively where the polygon 
is not necessarily convex. In this second part I am helped by Tony to show how, by adding 
vertices one at a time, P(n) may be found. 
  
Introduction 
 
The argument is illustrated for the case where a 5th (green) vertex is added to the existing 4. 
 
Your children may like to draw the successive diagrams using Geometer’s Sketchpad. On the 
left we show the count for our chosen example; on the right, the count for the general case. 
 
The effect of adding the first line from the new point 
 
Since a line passes through each pair of vertices, there are  
 

 lines   so in general:    lines. 
 
We now draw the red line from the new point to a chosen vertex. 
 

  
It crosses the  
 

 lines   so in general:    lines 

Fc(n) Pc(n)
°

4C2
nC2



 
except that 3   so in general:   (n – 1) 
 
all pass through the same vertex. The number of new crossing points, shown in yellow, is 
therefore 
 
4C2 − (4 −1) =

4C2 − 4 +1  so in general:   nC2 − (n −1) =
nC2 − n +1 . 

  
 
For the total number of crossing points we must add the old (blue) point, giving 
 
4C2 − 4 + 2    so in general:   . 
 
These divide the line into 
  

 segments  so in general:    segments. 
 
Each segment creates a new region. So the number of new regions is the same as the number of 
segments. 
 
 
 
The effect of adding the second and subsequent lines 
 

 

nC2 − n + 2

4C2 − 4 + 3
nC2 − n + 3



For the line through the second vertex and all following, the green point itself must be counted. 
This increases by 1 the number of regions added for this and all the 
remaining 
 
4 – 1 lines   so in general:   n – 1 lines. 
 
The grand total of new regions for which the red point is responsible is therefore 
 

 so in general:        

    
 

Substituting  for , we have the difference between P(n) and P(n + 1): 

 

    .    (7) 

 
 
 
 
 
Finding the P(n) values one at a time 
 
Starting with P(1) = 0 regions for n = 1 point, we can find each P(n) value by substituting for 
n in (7) and adding that number: 
 
 
 
n P(n)  P(n + 1) – P(n) 
 
1 0  
  2 
2 2 
  5 
3 7 
           11 
4         18 
           23 
5         41 
           44 
6         85 
 
 
 
 
 
 

( 4C2 − 4 + 3)+ 3
4C2 − 4 + 4( )

( nC2 − n + 3)+ (n −1)(
nC2 − n + 4) = n

nC2 − n
2 + 4n −1.

n(n −1)
2

nC2

n3 − 3n2 + 8n − 2
2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the method of finite differences to find a formula 
 
Though we have a formula for P(n + 1) – P(n), we don’t yet have one for P(n). What we do is 
take our table of values and keep subtracting pairs as we move to the right. We have to make 5 
difference columns in this way before we get down to zero. This tells us that the highest power 
in the polynomial we seek is 4: P(n) = .    
 
 
n             
 
1 0 
 a+b+c+d+e 
  
  2 
  15a+7b+3c+d   
 
2 2    3 
 16a+8b+4c+2d+e  50a+12b+2c 
 
  5     3 
  65a+19b+5c+d   60a+6b 
 
3 7    6    3   
 81a+27b+9c+3d+e  110a+18b+2c   24a 
 
  11     6    0 

an4 + bn3 + cn2 + dn + e

Δ0 Δ1 Δ2 Δ3 Δ4 Δ5



  175a+37b+7c+d   84a+6b    
 
4 18    12    3 
 256a+64b+16c+4d+e  194a+24b+2c   24a 
 
  23     9 
  369a+61b+9c+d   108a+6b 
 
5 41    21 
 625a+125b+25c+5d+e 302a+30b+2c 
 
  44 
  671a+91b+9c+d 
 
6 85 
 1296a+216b+36c+6d+e 
 
   
   
 
To each number in our difference table corresponds an expression obtained by the same process 
of successive subtraction as we move to the right. Our final subtraction gives us an equation in 
a alone. We then move to the left. We have an equation in a and b but can now substitute for a. 
And so we proceed, till we have the values for a, b, c, d and e:  

.       (8) 

 
That’s fine, but we can’t leave our difference table without advertising a second approach, 
(which readers will know from the books as ‘Newton’s forward difference method’), because it 
provides important and interesting extension work on Pascal’s Triangle for A-level students. 
 
The head of each column in a difference table is the apex of a Pascal Triangle weighted by that 
number. The entries sum the overlapping cells. This is clearer if we reorientate the table: 
 

P n( ) = n
4 − 6n3 + 23n2 − 26n + 8

8



 
 
For example, 85 = 0(5C5 )+ 2(

5C4 )+ 3(
5C3)+ 3(

5C2 )+ 3(
5C1)+ 0(

5C0 ) or, observing symmetry, 
(0 + 0)( 5C0 )+ (2 + 3)(

5C1)+ (3+ 3)(
5C2 ) . 

 
Generalising: P(n) = 0( n−1C5 )+ 2(

n−1C4 )+ 3(
n−1C3)+ 3(

n−1C2 )+ 3(
n−1C1)+ 0(

n−1C0 )  

         = n
4 − 6n3 + 23n2 − 26n + 8

8
.  

 
 
Proof by induction 
 
Because we are sure of our starting value, and sure of the number we have to add to obtain each 
new value of P(n), we are sure that the expression we have derived is correct. However, it is 
good mathematical form at this point – and a good exercise for your senior students – to 
construct a proof by induction. 
 
Taking stock 
 
We already had formulae for ,  and . We now also have one for P(n). If you 

substitute for  and  in equation (6) from Part 1: , you will find ( as 
you may have already suspected from Tony’s example in [Robin, 2013]) that  and  P(n) 
are one and the same. 
 
I leave you and your students with this question: Is there a meaningful formula for F(n)?   
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