LINES IN SPACE

Exploring ruled surfaces with cans, paper, Polydron, wool and
shirring elastic

Introduction

If you are reading this journal you almost certainly know more than the author about at least one of
the virtual means by which surfaces can be generated and displayed:

Autograph, Cabri 3D, Maple, Eric Weisstein’s Mathematica, ... and all the applets in his own
Wolfram Mathworld, at Alexander Bogomolny’s Cut-the-Knot or at innumerable other sites.
Having laboriously constructed one of my ‘real” models, your students will benefit by
complementing their studies in that wonderful world. Advocates John Sharp and the late Geoff
Giles stress the serendipitous dimension of hands-on work [note 1]. Brain-imaging techniques are
now sufficiently advanced that we can study how the hand informs the brain but | fear it may be
another decade before this work is done and the results reach the community of teachers in general
and mathematics teachers in particular [note 2]. You may find one curricularly-useful item under
the heading ‘Ruled surface no.1’: the geobox. The rest is something for a maths club, an RI-style
masterclass, a parents’ evening or an end-of-summer maths week.

Surfaces in general

Looking about us, what we see are surfaces, the surfaces of leaves, globes, tents, boulders,
lampshades, newspapers, sofas, cars, people, ... . What we look at are 3-dimensional solids, but
what we see are their 2-dimensional outer layers.

Studied in depth, the topic lies beyond the mathematics taught in school, but on a purely descriptive
level we can draw distinctions between one surface and another which help children answer the
question “How is that made?’. Why is a car body not folded from steel and a chocolate box not
pressed from card, but the other way round? Some simple geometry precedes considerations of
materials science and business economics.

We can characterise any point in a surface by its extreme (principal) curvatures in planes normal to
the tangent plane. They can be arranged in these 4 ways:
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As you see, these planes are perpendicular. Why should they be? Euler’s 1760 proof moves from
calculus through algebra to trigonometry [note 3]. All we shall do here is a little experiment to show
that the assertion is at least plausible.

Imagine looking down on a hilltop which meets this condition at the start. The easiest ascent and
descent is east-west; the steepest, north-south, so that the contour very near the summit (the Dupin
indicatrix) is an ellipse. An earthquake shears the landscape in plan:

Though the original ellipse has rotated, it is still an ellipse. We imposed half-turn symmetry but the
original two mirror lines, the major and minor axes, marking the planes containing the extreme
curvatures, have miraculously survived.

A finite distance from the hilltop the contour can be any shape, but look what happens as we take
parallel slices of this egg closer and closer to a point:

The muddy print of a rugby ball on the pavilion wall would still be elliptical even if the ball were
egg-shaped.

Points on the hilltop, the egg and the rugby ball are all of type A. The two principal curvatures share
the same sense (positive by convention). In case B (the saddle) the sense is opposite. In the special
case that they are both opposite and equal at every point (so that the mean curvature is zero) we
have a surface of least area for the boundary it spans (whether a closed plane curve or a closed



space curve), a minimal surface. There is a physical correlate to this condition which means that
such a surface is modelled by an elastic film like soap. To the curvature there corresponds a
proportional opposing pressure. Since the mean curvature is zero at every point, so is the net
pressure on the surface there. Any attempt to increase the area of the surface creates an opposing
force against which work must be done; that is to say, the minimum area represents a minimum
energy state: the film is in equilibrium with its surroundings.

Slicing an egg can be a messy business but tomography, the idea of taking parallel, equally-spaced
sections of a solid to reveal its shape is an important one. We have already mentioned contour lines
on a map to show relief, but the technology behind 3-D printing and how oncologists monitor the
progress of a dangerous tumour also depend on it . Happily for maths teachers, a simple means is to
hand. Think of the internal cardboard dividers protecting bottles in a supermarket box. Now
imagine the top surface not to be flat but to follow some interesting surface. The result, exploited by
John Sharp and christened by his editor at the time, Gerald Jenkins of Tarquin, is a ‘sliceform’ [note
4].

Ruled surfaces in particular

A ruled surface is the trace of a straight line moved through space. We give an orchestral conductor
a baton — in fact a telescopic one so that he can lengthen or shorten it at will — and observe him over
the course of the evening. The ends of the baton trace curves in space; the baton itself, a ruled
surface. Every point on one curve is joined to a corresponding point on the other by a straight line.
Through every point on the surface a straight line passes. Look up from the orchestra pit to the stage
and observe the swish of the curtain, a ruled surface.

These 4 cases by no means exhaust the possibilities:
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P is a cylinder. The rulings are parallel. They are therefore also all parallel to a particular plane.
Such a surface is called a Catalan surface. Q is a cone. The rulings all pass through a single point.
R is a conoid. The rulings all pass through a single line. They are also all parallel to a particular
plane. This too is therefore a Catalan surface. It is a familiar *puzzle’ object because, in orthogonal
views, it presents a square, a triangle and a circle. S is a helicoid. The rulings join a helix to its axis.
They lie in parallel planes perpendicular to that axis so again we have a Catalan surface. We shall
have more to say about this one.

Back in the 1920s it was the ruled surfaces on display in the Mathematics Gallery of the Science
Museum which turned the young artist Henry Moore to think about space and produce some of the
most remarkable sculpture of the twentieth century.

We shall describe some common ruled surfaces, and some which bound solids with interesting
symmetry. Of our 4 cases, A to D, we must abandon A at this point, but not C or D, or even B if the
ruling, while not being a principal curvature, persists across the surface. This is the case as we shall
see with the only ruled surface apart from the plane which is minimal: the helicoid.



We shall give the name ‘R-forms’ [note 5] to five of our seven examples because of the way they
are made: we take two congruent shapes in parallel planes, turn one in its plane and rule between
them. There are two features of interest:

(a) Projected in plan the overlapping lines produce an envelope curve: we have a piece of ‘curve
stitching’.

(b) We can also plot points a chosen fraction of the way along each line. The resulting locus is the
cross-section of the R-form at that height. Again we can determine this by projecting the figure in
plan.

As promised in the subheading to the piece, we shall use several materials:

(A) Two materials to follow individual rulings:

1. white craft wool (no. 2).

2. white shirring elastic (1 mm).

(B) Two materials which do not stretch or shear and therefore model developable surfaces:
3. paper (any).

4. the alloy from which drinks cans are made (any).

(C) A kit of interlocking polygonal panels to show how a surface of such materials can curve in 3
dimensions while resisting all deformation in 2 [note 6]:

5. Polydron (‘Frameworks”).

(D) A kit of interlocking curved panels from which to build developable surfaces:

6. Polydron (the quarter-cylinders and quarter-cones of ‘Sphera’).

1. and 2. require a curve at each end to span. In most cases these will be plane curves of the same
perimeter picked out in parallel laminae, either (i) as series of equally-spaced holes through which
wool can be threaded, or (ii) as magnet-and-keeper pairs anchoring lengths of shearing elastic. (i)
forces a “discrete” arrangement; (ii) allows a ‘continuous’ one. But our ‘Ruled surface no. 1’ will
use an example of (i) requiring the least DIY.

Our type (ii) arrangement takes advantage of the cheap, small, strong magnets now available to
create variable point positions and allow the use of different acetate grids (square, isometric, polar,
...) to locate them [note 7].

Ruled surface no. 1

This is the plane, but our concern is not the plane in isolation. The following ‘geobox’ (by analogy
with the 2-dimensional geoboard) is designed to help A-level students investigate lines, planes and
the relations within and between them.

Build this cube from Polydron ‘Frameworks’ squares. These are 7 cm on an edge, giving overall
dimensions of 35 cm. The red planes are xy planes for z=0,5; the blue, yz for x=0,5; the

yellow, zx for y=0,5. Each wool thread should be a bit longer than the cube’s space diagonal.

Secure one end of each to a small washer with a round turn and two half hitches; secure the other
using a round turn alone, coiling the surplus thread for neatness.



The A-level student must give meaning to the idea of an angle between two lines which do not
meet. We shall take such an example:

‘Line L, joins points (1,0,0) and (4,4,5); line L,, (5,3,0) and (2,5,5). Find the angle between them.’

To get inside the cage we can open the face x =0 like a door. We have stretched the two threads
but we now give one of our students a third thread and a protractor (with the warning to expect a
result correct only to within 5°), and say, “Translate the line L, till it cuts L, and measure the

smaller angle between them.” On paper the student has shown the angle to be about 561° and now
gets 55° with the protractor.

Ruled surface no. 2
This is S.

Look back at diagram B. Picture not just the two principal planes but all the ones in between. You
will realise that, as you swing round between two planes in which the curvatures are opposite, you
must hit one where it is zero (an observation dignified by the title the intermediate value theorem).
Where this plane does not change its orientation from point to point but continues indefinitely
across the surface, we have a ruling. And where there is a ruling through every point we have a
ruled surface (singly ruled if this is true of one of the two possible planes, doubly ruled if true of
both. The plane is the only surface with more than 2 rulings.) This condition holds for S. To trace
the helicoid with your pen: Hold it horizontal. Keep the point in the same vertical line while you lift
and turn it at uniform rates.

The senses of the principal curvatures only become apparent when you try to run up a corkscrew
staircase. Keep to the middle of each step and the gradient is constant; move in towards the axis and
it rises; move out towards the wall and it falls. (Thus, the more tired you get, the greater the
temptation to move to the wall - if not stop altogether and use it for support).

Now it happens that, for the helicoid, the mean curvature at every point is zero. It is therefore a
minimal surface, in fact the only ruled surface apart from the plane to be such.

If, in the previous demonstration, you were to follow the helix’s axis with the middle of the pen,
you would get a second helix a half-turn out of phase with the first. This makes possible a simple
soap film simulation. Take an open perspex cylinder and run two rods through diameters to



represent a pair of rulings. Immerse the model in soap solution and withdraw. The film will attach
itself to the rods and trace a helix along the cylinder wall.

Loop a rubber band round a protruding end of each of the two rods and it will follow the helix. The
helix is a geodesic: it traces the shortest distance between two points on the cylinder.

Here is our “‘double’ helicoid realised by methods (i) and (ii) respectively:

Ruled surface no. 3

Our first R-form is the simplest but one of the most interesting. Here it is, realised in both (i) and
(ii) arrangements:



Our plane closed curves are two equal circles forming the end faces of a cylinder. As this diagram
shows, we have the choice of joining holes which lie in a plane shared with the axis, producing the
cylinder itself, or, as shown on the right, leading to our surface, the hyperboloid of one sheet [note
8].

This is the apple-core shape familiar from lampshades and power station cooling towers. (The
cooling towers are laced with steel rods in just this way.) The symmetry of the figure tells you that,
if the thread is elastic (or each thread is separate and has a weight on the end), you can achieve the
right-hand figure by rotating the bottom with respect to the top. Because you can do this in opposite
senses, two lines run through every point: the surface is doubly ruled. If you give the top a half-turn
with respect to the bottom you get a double cone. (This example dramatises the point that in general
neither the perimeter nor the area of cross-section remains the same all the way down an R-form.)
There are many ways to realise the surface. Here are three. Look at a box of Q-tips after a number
have been removed. Bend a length of wire in an ‘L’ (corresponding to the axis and a radius in the
right-hand figure above) extended by a piece bent out of its plane (corresponding to the red line)



and put it in a power drill. Spin a skeleton cube about a space diagonal. (The last adds a cone top
and bottom.)

Ruled surface no. 4

Replace the disks by ellipses, set their axes at right angles and thread from the end of a major axis
to the end of a minor axis. The result is a surface important in geometrical optics. What intuition
tells you is in fact the case: the cross-section halfway down is a circle, the “circle of least confusion
[note 9]. It is a developable surface. The right-hand picture shows it half completed in paper.

Ruled surface no. 5

What happens if we shrink the minor axes of our two ellipses to zero so that the ellipse becomes a
line segment?

In the plan view we see the ‘stitching curve’, a parabola reproduced 4 times [note 10]. In projection
the spacing of the holes is different along the two sticks but roughly constant along each. Though
this is not true in the oblique view the changing aspect of the threads across the picture plane

compensates.



We lay a card slit on an OHP and move the card so that the plane of light issuing from the slit
sections the surface parallel to the two sticks.

As you see, the section is a rhombus in this general position. In surface no. 3 the section halfway
between the crossed ellipses was a circle. Here, as you can confirm by constructing the
corresponding 2-dimensional locus, it is a square.

Ruled surface no. 6
In surface no. 5 our stitches ran from the end of one stick to the middle of the other and ran right

round to complete a double length of each line. In no. 6 we stitch from end to end and only
complete a single length.



As you see, the line of sight in
the photograph passes through
opposite edges of the green
cube. However, front and back
faces in the figure form base
and top in the photograph.
Note the tetrahedral
symmetry: swap top and base
and you swap one pair of cube
edges for a parallel one.

This is the “saddle’ surface familiar from roofs over churches and restaurants. The figure defines a
skew quadrilateral, whose opposite sides are the diagonals of parallel cube faces. We start with the
red stringing. Now we use two more sticks to complete the quadrilateral, (diagonals of another pair
of cube faces) and thread strings in the *blue’ direction also. Like the hyperboloid, then, the surface
is doubly ruled. In this view of a type (i) model you see hyperbolae running across the picture,
parabolae up and down. These give the surface its name, the hyperbolic paraboloid. They may be
displayed by the OHP-&-slit method described for the previous example.



Ruled surface no. 7

When the paired laminae are regular polygons, attractive R-forms result. Here we take a pair of
equilateral triangles, separate them along an axis through their common centroid, rotate one so that
an axial plane runs through the vertex of one and a side mid-point of the other and thread them

correspondingly.

As you see (and perhaps expected from our previous examples) the halfway section is a regular
hexagon. Projected on to the plane, the locus is shown in the right-hand figure below. But here is a
nice little paradox, resolved by considering rotational symmetry. Imagine we had started at one of



the 6 points where one triangle lies directly above the other and proceeded round the figure
clockwise from our viewpoint. The result would be as shown in the left-hand figure.

As you see, this hexagon has 3 symmetry axes, not 6.

Developable surfaces in particular

Look back at ruled surfaces P and Q. They share a particular property. They can be obtained from
the plane without deformation. Paired points on the plane and the surface stay the same distance
apart. Because of this point-for-point correspondence, the surfaces can be rolled on the plane. Such
surfaces are said to be developable. All developable surfaces are ruled but not all ruled surfaces are
developable. (Most of those we shall go on to describe are not.) Ask 3 children to stand in line
facing the class. The first displays a card which says ‘This surface is developable’; the second,
‘therefore’; the third, ‘This surface is ruled’. If that statement is true, is it logical to reverse it, for
children numbers 1 and 3 to swap places? Answer: ‘No’. A theorem may be true but its converse
false. The developable surfaces are singled out by having one or both principal curvatures zero.
Thus their product (the Gaussian curvature) is zero. Look right back to our picture series A to D.
Case C includes the cylinder, P, and the cone, Q. Case D is the plane. The notion of cylinder and
cone can be generalised to include all forms with parallel and convergent rulings respectively. A,
which, as we know, does not allow rulings let alone developable cases, is unfortunately one of the
most important. It includes our planet. The history of the atlas is the history of the mathematical
problem of how to represent the round earth on a flat piece of paper.

A developable surface, then, if it bends at all, only bends in one principal plane.

You read out your speech from a sheet of paper held out in front of you. “Ladies and ...” Oops, the
top has folded out of sight. You start again. This time you bend the sheet slightly in a horizontal
plane. “... gentlemen.” A sheet of paper models a developable surface. You have pre-empted a
bend in a vertical plane. Here, shown in plan and frontal view respectively, is a paper holder using
that principle:



Because distances between points and angles between lines stay fixed, we can imagine a
developable surface divided into infinitesimal rigid elements. For example, in the plane, a square
must stay a square. If we are to distort the square we must come out of the plane, we must make a
fold. The square must therefore become a skew quadrilateral consisting of two right-angled
isosceles triangles hinged along their common hypotenuse. Here we use Polydron ‘Frameworks’
pieces to make a mesh and drape it over a round stool to form part of a cone. We pick out points
along one particular ruling to show what happens to the elements coloured red.

O

O

This cone is a pretty rough approximation but, if our net had had 60 units on a side instead of 6, you
can imagine that we could have obtained quite a good one; if 6,000,000, what we actually get with a
sheet of filter paper [note 10].

An important fact about developable surfaces is that, whatever you do to them, they
remain developable surfaces (or tangential sets of them). This has the status of a theorem but it
follows immediately from the definition.

The most striking example children meet is a cylinder becoming a tetrahedron:



Go back to the speech you were making. | claimed that the curve made you safe. But a drinks can is
curved and can be deformed quite easily:

We have used Polydron ‘Sphera’ pieces to model half of the crushed can. The shapes available are
necessarily restricted. The can’s conical parts are probably nearer one third than a half of a cone and

the triangular faces are not likely to be equilateral, but, qualitatively, you see the sort of thing that
happens.

In the next case, the ‘squash’ line is oblique. Our model shows that the bottom half-cylinder is
unaffected but the upper part has become a pair of half-cones arranged apex-to-base.



In our last case we have squashed the can along two lines perpendicular to the cylinder axis and to
each other:

The resulting solid has the symmetry of a tetrahedron whose faces are isosceles triangles (like the
one we folded from the paper cylinder). We have not tried to make a Polydron model but, given a
suitable range of flat, cylindrical and conical pieces we could make a fair imitation.

We’ve said that a developable surface rolls on a plane. Other than the plane, can one developable
surface roll on another?

We can think of ‘rolls on’ as a relation, R. So we can write:

Cylinder R Plane - but also, since the motion is relative - Plane R Cylinder.
Similarly,



Cone R Plane, and Plane R Cone.
The relation is symmetrical.

So we have: Cylinder R Plane, Plane R Cone.
Do we have Cylinder R Cone?
Yes: the relation is also transitive.

In this experiment a pair of ‘feet’ has been marked on each of 5 equally-spaced rulings on a
cylinder. This has then been rolled on a cone and the corresponding ‘footprints’ marked. (Note
however that, though we have been able to set the cylinder so that the first pair of footprints lies on
a ruling of the cone, they necessarily diverge thereafter.)



To see why the relation must be transitive, imagine we adapt the above experiment in the following
way. Instead of the little feet, we stick a strip of double-sided tape around the cylinder. As the
cylinder rolls on the cone, we pull the cylinder away from the tape so that the tape remains on the
cone. The tape represents the plane. We have physically telescoped the two statements

Cylinder R Plane, Plane R Cone into Cylinder R Plane R Cone.

The plane acts as the identity in a binomial operation.

There is a case of a ruled surface which is not developable, rolling on another:

Put two cylinders on skew axes in contact. Imagine one end of each cylinder is turned until a ruling
in one lies on a ruling in the other. At that point the cylinders will have become hyperboloids (Our



‘Ruled surface no. 3’). We can now turn the one and the other will mesh with it. This is the
principle of hyperboloidal gears [note 12]. (Other gear types can only accommodate shafts which
are either parallel or perpendicular.)



I shall end this section on developable surfaces with a simple experiment from
‘Thomson and Tait’ [see note 3] which produces a rather unexpected case called the

tangential developable.

Lay one sheet of paper on another. Cut out and discard a shape which only curves
positively and tape together the matching edges. Take one corner of one of the sheets
and lift your model off the table:



What was originally a plane curve becomes a space curve. But the beautiful thing is
that, at any point on it, the tangent extends to one side in one sheet (red) and the other
side in the other sheet (blue).
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Notes

1. For a 14-minute video interview with John Sharp go to:
http://www.lkl.ac.uk/cms/index.php?option=com_content&task=view&id=69&Itemid
=48 or, more simply, google ‘John Sharp Sliceforms LKL’ and click on the top entry.

2. Since Stanislas Dehaene’s landmark publication The Number Sense (English
edition 1997), a lot has happened which has gone unremarked in the maths teaching
literature. Thank goodness then for Gemma Richardson’s piece in our junior journal:

Richardson, G., ‘The Brain and Primary Maths’, Primary Mathematics, Vol. 15, issue
3 (Autumn 2011), pp. 15-16.

3. There cannot be many textbooks a century and a half old which are still consulted
today but ‘Thomson & Tait’ (1867) is one. Google that title, then the two remarkable
collaborators. I hear through my medium that they are taking a great interest in the
technology which allows you now to download Volume 1 of their Treatise on Natural
Philosophy as an e-book. Go to section 130 for their proof of Euler’s Theorem.

4. Following his first Tarquin book with the title Sliceforms, John has published a
much fuller work:

Surfaces: Explorations with Sliceforms, Tarquin 2004.
Go to www.tarquingroup.com and click on ‘Books’.

5. The name is a nod to the product designer Tony Wills and his ‘D-forms’. There is
no mathematical connection between the two, just the following association. Imagine
that, instead of keeping the two crossed ellipses parallel in ‘Ruled surface no. 4’ and
threading between them, we had stitched the edges together point-for-point. Think of
two pitta bread halves joined at right angles and baked. The result comes out of the
oven like this:



Given a material which allows the necessary distortion, and swapping the ellipses for
dumbbell-shaped laminae, we have an example which is neither developable nor ruled
but a lot more familiar: the tennis ball.

The D-forms, however, are both ruled and developable. They are the subject of John
Sharp’s 2009 Tarquin book with the same title, and extend the range of surfaces one
could ever imagine to be developable.

6. With reluctance we omit the steel balls and stick magnets of Geomag because the
resulting surfaces do not preserve angle. (What it could model is a fabric, where the
warp and the weft run at right angles, allowing a square to deform into a rhombus.)

7. Use the Internet. For the company I use, go to www.supermagnete.de . For ‘Ruled
surface no. 3’ | used identical, paired magnets and cut and drilled one set to receive
one end of the elastic thread, held with a dab of *Araldite’. But this is not necessary.
In the corresponding picture for ‘Ruled surface no. 2’ you see magnets already fitted
with hooks.

8. The hyperbola has two lines of symmetry: one through the foci and a perpendicular
one through the centre. Use the first as axis of revolution and you get two separate
pieces (sheets); use the second and you get the hyperboloid of one sheet. The latter
surface is ruled; the former, not.

9. An astigmatic lens focuses one line at one distance, a perpendicular line at a
different distance. In the interval (the conoid of Sturm) the blur changes from an
ellipse in one orientation to one at right angles. There is an intermediate distance at
which it is circular.



10. At www.cut-the-knot/ctk/Parabola.shtml you can use Alexander Bogomolny’s
interactive applets to investigate every aspect of the parabola’s geometry, in particular
for our purposes why the curve-stitching procedure and the paper-folding procedure,
where you keep folding one edge of a sheet on to an arbitrary point, produce the same
figure.

11. To avoid confusion, I should stress here that I am not triangulating, a process
through which computer animators can simulate any curved surface, whether
developable or not.

12. Google ‘Ch06J Spiral Gear Geometry’ and click on the top entry.
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