
Plane

 The total angle defect for a polygon is 360°;
                 that for a polyhedron, 720°.

Use the notes and models to follow the
analogy George Pólya thinks René Descartes
may have drawn.
The geomlab file pursues the analogy to obtain Descartes'
formula 2V - P + 2F = 4, where V is the number of vertices,
F the number of faces and P the number of interior angles.
Swap 2E for P and you have the Euler formula. Did
Descartes see it? Opinion is divided.  
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Descartes' Analogy
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George Pólya’s reconstruction of an analogy Descartes may have drawn 
 

                               
 
 
 
On the left:         On the right: 
 



  

Build rectangles on the sides of the polygon.    Build prisms on the faces of the polyhedron. 
The circle sectors between them fit together    The sphere sectors between them fit together 
to complete a circle.        to complete a sphere. 
 
A plane angle can be stated in radians      A spherical angle can be stated in steradians 
by quoting the length of arc of the unit     by quoting the area of surface of the unit 
circle subtending it.         sphere subtending it. 
A whole plane angle is 2π  radians.     A whole solid angle is 4π  steradians. 
 
           The vertex model shows that the spherical   
            triangle representing the angle defect, the amount by 
           which a vertex falls short of a ‘flat’ angle, has angles 
           of A = π −α , B = π − β , C = π −γ . (A,B,C are the 
           dihedral angles between the faces, α ,β,γ  the face 
           angles.) 
 
           The total angle defect is a whole angle, 
           4π  steradians. 
 
 
We shall use the sphere model to determine the area of our spherical triangle, and hence the angle defect it 
represents. 



  

                                                        
The white dots mark the vertices of the spherical triangle whose area Δ  we require. Completing the great circle for 
each side, we find we’ve produced a congruent triangle in the antipodal position, shown by yellow dots. 



  

Corresponding vertices mark the ends of lunes. We have a blue lune and a congruent, vertically opposite, blank lune. 
Likewise for  red and green. Take the angle A in our triangle. The area of the lune to which it belongs is that fraction 

of 2π  x the surface area of the sphere, A
2π

× 4π = 2A . Adding the corresponding blank lune, the area is double that, 

4A . The lunes of A, B and C and their doubles together cover the whole sphere, and the triangle and its double each 
3 times. Thus the total exceeds 4π  by the area of 4 triangles:  
 
4A + 4B + 4C = 4π + 4Δ , whence Δ  = A + B + C  - π . 
 
Since A = π −α , B = π − β , C = π −γ , the area of our spherical triangle is 
(π −α )+ (π − β )+ (π −γ )−π = 2π − (α + β + γ ) . This gives us a representation of the angle defect in terms of plane 
angles, (the angles of the faces meeting in the vertex), and a total angle defect of 4π  radians.  
 
Returning to our analogy,  
 
On the left:         On the right: 
 
The vertex model shows that the angle defect,   We now know that the angle defect, the amount 
the amount by which a vertex falls short of a    by which a vertex falls short of a flat angle, is  
 straight angle, is π −θ  radians.       2π − (α + β + γ )  radians.     
   
The total angle defect is 2π  radians.     The total angle defect is 4π  radians.   
       



 
      How Descartes got close to the Euler polyhedral formula 
 
Having established the total angle deficit expressed in plane angles for the polyhedron, Descartes is able 
(conjecturally) to reason as follows. 
 
Let there be  vertices , faces , interior angles. 
Let the face   have   interior angles. 
 
At each vertex   
the angle deficit (the sum of the interior angles meeting there).  

So the total angle deficit , 

where  is the sum of all the interior angles meeting in all vertices. 
But  is also the sum of all the interior angles of all  faces 

 . 

Thus . 
Whence  . 
 
What interests commentators is that he is at this point just two steps from the Euler formula , 
where  is the number of edges. It is necessary to realise first that  is also the total number of sides of all the 
faces, second that this is twice the number of edges of the polyhedron. But the first observation is of little 
interest on its own and the second requires one to identify ‘edge’ as a descriptor in the first place. Euler did so 
(his term was ‘acies’) in the course of drawing a different analogy.  
 
Descartes had been interested in a general, metric property of all polyhedra. Euler wished to find a way to 
classify different ones. What descriptors are key? The affinity between any two convex 5-sided polygons is 
clear; on the other hand a square-based pyramid and a triangular prism both have 5 faces but seem to be 
qualitatively different. Euler realised that, whereas in two dimensions, it is sufficient to consider only [vertices] 
(0 dimensions) and sides (1 dimension), in three dimensions “… three kinds of bounds are to be considered …” 
(Elementa doctrinae solidorum, 1758): vertices (0 dimensions), edges (1 dimension), faces (2 dimensions). (We 
put the second ‘vertices’ in brackets because Euler’s Latin would translate as ‘solid angles’ but the context 
makes his meaning clear: in the two-dimensional case, a point where 2 sides meet; in the three-dimensional 
case, a point where more than 2 edges meet.)   
 
We do not know how Euler arrived at his polyhedral formula. But he now had the 3 relevant parameters and 
could make the 3 counts on a whole range of tabulated examples. Pólya conjectures that Euler may have made 
the observation that, when  and  match, so does , leading to the hypothesis that  is a function of  and 

. Pólya is careful to reconstruct the heuristics in a way that excludes hindsight. When we present such a table 
to contemporary children, we cannot avoid steering them towards ‘the answer’. The activity is fun, and indeed 
satisfying, for the children, but it is not history.  
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