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Introduction 
 
When we look about us, we do not see numbers, but we may see a set of square tiles or a staircase. The 
teacher can always use geometry in the service of arithmetic. We arrange square tiles in an a by b 
rectangle and count them to find the product. The ‘times tables’ (plural) make up the operation table 
(singular) for multiplication of the natural numbers, usually called the multiplication square. This 
tabulation is already a visual aid. We look for the product a times b on the multiplication square and we 
find it labelling the corner of our rectangle of tiles. The idea of this book is to start from such simple 
beginnings and see how far we get. 
 
In 1983 I was lucky enough to attend a course run by the late Edith Biggs, devoted to enriching the 
classroom experiences of upper primary children, including their experience of the ‘times tables’. 
Inspired by this, I went through old copies of the journals and one-off publications of The Mathematical 
Association and The Association of Teachers of Mathematics. I found, for example, an account of a 
weekend brain-storming conference by a group of teachers devoted entirely to the multiplication square. 
What is its structure? What properties arise from this? As a long-time member of both assocations, I 
continue to trawl through the journals, to which I occasionally contribute our experiences with the touring 
maths lab I launched in 1989 and continue to run helped by colleagues and students, The Magic 
Mathworks Travelling Circus (www.magicmathworks.org). Though the lab tours internationally, my 
reading of the teaching literature is still largely confined to these Isles. I therefore invite readers in other 
countries to bring to my attention for future editions ideas not found here (pstephenson1@me.com ).  
 
Intended readership 
 
British teachers elect to train either for primary or for secondary work. It is valuable for the primary 
teacher to learn how her work might be developed later in the child’s schooling, and for the secondary 
teacher to realise what mental constructs the child brings to his secondary school. The emphasis in this 
book is not on a command of products as number facts but on the structure of the table which summarises 
them. Familiarity with the algebraic laws which lie behind this structure gives the child alternative ways 
to access these facts, indeed alternative ways to do and check any calculation. Those running courses for 
teachers have the opportunity to convey the freedom this understanding provides and, though the book is 
addressed to teachers directly, it is among their tutors that it is likely to find its widest readership. 
 
Pedagogy 
 
There is a judgement the teacher must make, which for simplicity I’ll personalise: whether to follow 
Gattegno or Dienes, twentieth century mathematics educators with different attitudes to classroom aids in 
the service of arithmetic and algebra. 
 
The case for Dienes 
 
We learn through all our senses. Initially the brain receives an unsorted input of sensory data, which is 
only separated according to specific sense modalities at a later stage. If we wish to identify birds visually, 
we are more likely to retain the images if, simultaneously, we hear recordings of their songs and calls. (If, 
however, the different senses receive conflicting inputs, the effect, as you expect, is counterproductive.) 
 
Before the era of brain research Z. P. Dienes suggested that we come to understand a concept by meeting 
it in a range of perceptually different embodiments then abstracting the features which are common to 
them. (The topic suites exhibited in The Magic Mathworks Travelling Circus follow this scheme.) The 
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Dienesian programme requires the classroom to be a sensorily rich environment, in which the child 
moves between number base blocks, the mathematical balance, and other pieces of apparatus.  
 
The case for Gattegno 
 
Caleb Gattegno championed the use of wooden rods, colour-coded according to their integral lengths, 
devised by the Belgian, Georges Cuisenaire. Gattegno showed how all the arithmetical operations could 
be performed by their manipulation. He called his scheme with deliberate provocation ‘qualitative 
arithmetic’. Their modern champion, Ian Benson, uses the slogan ‘algebra before arithmetic’. Take for 
example the red and (light) green rods. Though the child may learn that ‘red = 2’, ‘green = 3’, he can 
simply write ‘R’ for the red, ‘G’ for the green, and thereafter ignore the particular value they represent, 
building equal trains and writing, for example, ‘RRRRRR’ = ‘GGGG’ = ‘RRRGG’, and so on, fully 
symbolic statements. As the child moves the blocks around he is carrying out algebraic operations in an 
enactive way. With the colour and feel of the rods, his experience is indeed multisensory, but confined to 
one particular piece of apparatus.  
 
Comment 
 
In this book I’ve attempted to do for the muliplication square what Gattegno did for Cuisenaire rods 
(except with a Dienesian tendency to use a variety of equipment in addition). This is not because I think 
this particular tabulation is indispensable but because it is already there on classroom walls and teachers 
may be interested to see how much they can do with it. Conceptually, it is also an example of an 
operation table. For comparison, I take every opportunity to use the addition square. The more familiar 
‘number bonds to 10’ are the cells which lie on the diagonal stripe connecting all ‘10’ entries in the 
square.  
 
Conventions 
 
In keeping with standard practice, the child is ‘he’; the teacher, ‘she’. ‘We’ will mean the teacher and her 
class. 
 
On our multiplication squares, the axes run left to right along the top, and top to bottom down the left 
side. 
 
When we consider the algebraic laws governing the binary operation ‘multiplication’, it will be important 
to distinguish multiplicand and multiplier. We shall write the former first and the latter second. Thus in ‘3 
x 2’, ‘3’ is the multiplicand – the number being multiplied; ‘2’, the multiplier – the number doing the 
multiplying.  
 
In parallel with this, we shall find the multiplicand along the top of the square, the multiplier down the 
side. 
 
The same will apply to addition and the addition square.  
 
 
 
 
 
 
 



 4 

The development 
 
As we advance through the key stages we shall tackle about fifty tasks. In accord with Bruner’s spiral 
curriculum, we shall revisit topics, but treat them in more depth each time. This progression follows the 
sort of numbers we shall deal with, starting with the natural numbers and finishing with all the reals.  
 
In the text boxes is the pedagogy; inset in italics are the tasks, sometimes prompted by a question. I have 
on occasion suggested how an investigation might be presented for dramatic effect. But these are notes 
for you the teacher. Having selected a task, you will know best how to present it to your children, and 
how many times an exercise should be repeated. I have been very free with the allocation to Key Stages. 
You know your children and can move up and down my list till you find a task you think they’ll enjoy, 
whatever Key Stage label I’ve given it. 
 
Because we emphasise the structure of the multiplication table (singular), we depart from the National 
Curriculum, which specifies multiplication tables (plural), introducing them a few at a time according to 
how memorable and useful they are. For example, the multiples of 2, 5 and 10 come first.  
 
Paul Stephenson 
12.11.18 
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Level  Activities  Topics 
 
Lower KS1 1, 2, 3           Equal addition model of multiplication 
 
Upper KS1 4, 5, 6   Cartesian product and rate models of multiplication 
 
Lower KS2 7   Scaling model of multiplication 
 
  8, 9, 10, 11  The commutative property 
 
  12, 13   Composing the multiplication square (m.s.) 
 
  14   Equal ratios as equivalent fractions 
 
Upper KS2 15   Preparing to add fractions 
 
  16   The associative property 
 
  17   The distribution of multiplication over addition 
 
  18   Division as the inverse operation to multiplication 
 
                       19, 20   Highest common factor (Greatest common divisor) 
 
  21, 22   Lowest  common multiple 
 
Lower KS3 23, 24, 25, 26, 27 Prime factorisation 
 
  28, 29   Alternative multiplicative partitions 
 
  30    Occurrence on the m.s. of rectangular, square numbers 
 
  31   Occurrence on the m.s. of triangular numbers 
 
  32, 33, 34  Triangular numbers and blocks on the m.s. 
 
  35, 36, 37  Occurrence on the m.s. of tetrahedral, pyramidal, octahedral 
     Numbers 
 
  38   Examining the m.s. as a block graph 
 
Upper KS3 39, 40, 41  Prime factorisation patterns on the m.s. 
 
  42, 43   Displaying the m.s. to particular moduli 
 
Lower KS4 44, 45, 46, 47, 48, 49 Investigations on the m.s. 
 
  50, 51   The m.s. extended to the signed integers and the form of the block 
     graph which results 
 
Upper KS4, 52   The m.s. extended to the real numbers, changing the block graph  
KS5     into a continuous surface; the hyperbolic and parabolic sections 
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Lower KS1 
 
We begin with the equal addition model. In more advanced terms, a set of multiples is seen as an 
arithmetic progression in which the first term and common difference are equal. 
 
1. We look at a real staircase and talk about it. What is special about the way the steps go? If the 
 school is on a single level, you will have to project a picture. 
 
2. We take paper sheets with numbers written on them and place them on the correct steps. If the 
 school is on a single level, this must be a homework task shared with the parents wherever a 
 staircase may be found. 
 
As long advocated by Ruth Merttens, and supported by recent research, this sharing with parents is 
essential to the early development of the child. 
 
3. With Multilink cubes we build staircases whose risers have unit height, and …  
 
in accordance with Dienes’ principle of perceptual variability 
 
 … do the same horizontally with Cuisenaire rods. 
 
Upper KS1 
 
We model the product of whole numbers as a Cartesian product. The name Cartesian product comes 
from the x and y Cartesian axes. In a Cartesian product each member of one set {𝑥#, 𝑥%, 𝑥&,… , 𝑥(} is 
paired with each member of another {𝑦#, 𝑦%, 𝑦&, … , 𝑦+}  to form the set of all mn pairs 
{(𝑥#, 𝑦#), (𝑥%, 𝑦#), (𝑥&, 𝑦#),… }. 
 
I owe the following task to Julie Anghileri. 
 
4.  With 3 types of top and 4 colours of shorts or skirts, how many different outfits can we make? 
 Working in groups, the children make their own collection of clothes from  coloured and 
 patterned papers – and may wish to extend the task to more shorts/skirts. When they arrange their 
 models on a big sheet of paper and wish to check that they’ve got all the possibilities, it is 
 important not to steer them towards a tabular arrangement. However, the children should discuss 
 their displays and you may call upon a group to offer reasons for their choice.  
 
5.  We build staircases whose risers have heights other than 1 unit, and again repeat the task 
 horizontally with Cuisenaire rods. 
 

In tasks 1 to 11 we treat a ‘times table’ (singular). 
We model the binary operation ‘multiply’ in several different ways. 
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Here we’ve built 4 staircases, labelled the steps and set them alongside each other, (anticipating activity 
37 much further down the line). In plan view we have a multiplication square but we do not capitalise on 
the fact at this stage. 
 

 
 
 
We explore analogous situations involving rate. An analogy takes the form: 
 
  a in domain A is like b in domain B (in respect of property X.)  
    
In the view of some neuroscientists, the drawing of analogies is the brain’s main way of incorporating 
new information into an existing schema. X is not a given; the brain has to supply it.  
 
In a rate the two quantities compared are of different kinds. 
 
6.  The 20 of us dance in 5 rings of 4. Over in the field are 5 cows. How many legs have they  got? 
 There are 5 cars. How many roadwheels have they got? 
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Lower KS2 
 
We remodel the staircase as a right triangle to realise multiplication as a scaling operation. Implicit is the 
idea of ratio. In a ratio the two quantities compared are of the same kind. Accordingly a ratio has 
dimension zero. It is a rational number. In two similar figures corresponding sides stand in the same ratio. 
 
7. On the table are right triangles of different shapes and sizes. (They are in fact restricted to those 
 which have height-to-base ratios of 1, 2, 3, 4). Our job is to sort them into sets of similar 
 triangles. We do this by overlaying one on another. 
 
Photocopy masters for the triangle sets follow the pictures. Mount on card and cut with a craft knife. Cut 
on the outside of the thick lines to give the triangles a border. 

 
Though it’s a digression here, we should not pass up the opportunity to reinforce this work with similar 
shapes. Take from your set of attribute blocks: circles, squares and equilateral triangles, in three sizes and 
in a variety of colours. The children are to sort them into three sets, in each of which all the shapes are 
similar. (There’s no harm in using the word ‘set’ here since the technical and the everyday meaning 
coincide.) 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 9 

 

 



 10 

 



 11 

The commutative law states that the products ab and ba are identical. It provides an opportunity to do 
some ‘people maths’.  
 
8. Five children stand in line in front of the class. Ashok holds a card with ‘3’ on it; 
 Jill holds card ‘X’; Tracy, ‘4’; Ben, ‘=’; Mira, ‘12’. The class are asked ‘Who can swap places?’ 
 
 9. With Cuisenaire rods we make rectangles with 3 rows of 4, and 4 rows of 3. If we  draw round the 
 rectangles and fill them with Cuisenaire cubes (the white rod), what will we find? 
 
10. On a mathematical balance we put a single hanger on peg ‘6’ on the left. We balance the beam by 
 putting 2 hangers on peg ‘3’ on the right. If we’re not allowed just to put a single hanger on peg ‘6’ 
 on the right to match the one on the left, how else can we balance the beam by changing the right 
 hand side? 
 
For interactivities with the mathematical balance go to www.magicmathworks.org , then ‘Virtual Circus’, 
then ‘Multiplication’, then ‘Seesaw’. 
 
For an interactivity investigating how the commutative law gives a symmetry axis to the multiplication 
square, go to www.magicmathworks.org , then ‘Virtual Circus’, ‘Number Patterns’, ‘Multiplication 
Square’, ‘Contents: Table Symmetry’. 
 
11. How can we do ‘2	 × 	3	 ×	54? We ask the children to draw blank 5 × 6 rectangles on squared 
 paper and divide them into 2s, 3s and 5s in as many ways as they can. They can use shading or 
 colours. 
 
The children should keep their diagrams for later use. Here is one selection: 
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                  2 x 3 x 5                                        3 x 2 x 5 
 
      

      

      

      

       

  
                   2 x 5 x 3                                        5 x 2 x 3 

 
                    3 x 5 x 2                                         5 x 3 x 2 

 
 

  
 
 
 
 
 
 
 
 

      

      

      

      

      

 

      

      

      

      

      

 

      

      

      

      

      

 

      

      

      

      

      

 

      

      

      

      

      

 

 
 
With Cuisenaire rods: 
 
 
 
 
 
Swap 3 2s for 2 3s. 
 
 
 
 
 
 
 
 
 
    
 
Swap 5 2s for 2 5s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Swap 5 3s for 3 5s. 
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12. Working in pairs, the children lay acetate sheets over cm squared paper on a cutting board and 
 secure the overlay with masking tape. They decide on the dimensions of rectangles and, in the  
 bottom right hand corner cell, they write their areas in terms of the number of squares they 
 contain.. They  cut out the rectangles with craft knives and give them to the teacher. 
 
 The teacher puts a right-angled frame on a visualiser, receives the rectangles from the children 
 and packs them in so that their top left hand corners coincide with the vertex: 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 Ask the children to comment on the result. 
 
For an animation go to: www.magicmathworks.org , then ‘Virtual Circus’, ‘Number Patterns’, 
‘Multiplication Square’, ‘Contents: The Table’. 
 
13. The children fill in empty 10 × 10 tables, then use them as if they did not know the products. 
 That is to say, to find the product of of 8 and 7, they run one finger along the top to ‘8’, another 
 finger down the side to ‘7’, and see where the ‘8’ column and the ‘7’ row intersect. 
 
In these notes we are not concerned with how the children learn the multiplication facts. However, a good 
exercise, having made the 10 x 10 squares, is for the children to mount them on card, cut them up and 
offer them to other groups to solve as jigsaw puzzles (as long advocated by Afzal Ahmed).  
 
For an interactivity go to www.magicmathworks.org , then ‘Virtual Circus’, then ‘Multiplication’, then 
‘Tables Jigsaws’. 
 
There is however some structural interest in these puzzles. 
 

20 

28
 24

 

90
 

In tasks 12 and 13 we finally put the individual ‘tables’ together as the 
multiplication square. 
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With two adjacent cells there is no ambiguity. We have two consecutive terms in an arithmetic 
progression and immediately identify two consecutive terms and the common difference. With two terms 
connected by a corner this may not be the case. We’ll take two examples. First this: 
 

          a 
         
 
 
 
                b 
 
  
We have: 𝑎(𝑏 − 1) = 15										 = 3 × 5 = 5 × 3 = 1 × 15 = 15 × 1 
                (𝑎 − 1)𝑏 = 16          = 4 × 4 = 2 × 8 = 8 × 2 = 1 × 16 = 16 × 1 
 
whence 𝑎 − 𝑏 = 1  𝑎 =	one of 1, 3, 5, 15 
    𝑏 =	one of 1, 2, 4, 8, 16 
 
The only (a,b) pair consistent with these conditions is (5,4). 
 
Now this: 
 
       a 

     
 
    b 
 
 
 
We have: 𝑎𝑏 = 12                   = 3 × 4 = 4 × 3 = 2 × 6 = 6 × 2 = 1 × 12 = 12 × 1 
                (𝑎 + 1)(𝑏 + 1) = 	20             = 4 × 5 = 5 × 4 = 2 × 10 = 10 × 2 = 1 × 20 = 20 × 1 
whence 𝑎 + 𝑏 = 7   a = one of 1, 2, 3, 4, 6, 12 
                                                            b = one of, respectively, 12, 6, 4, 3, 2, 1 
 
There are two solution pairs here: (3,4) and (4,3). These cell pairs are symmetrically disposed about the 
main diagonal of the square. 
 
 

15 

16 

12 

20 
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14.  For the following task, either issue sheets with pairs of horizontal strips 36 boxes × 1, where each 
 box is 5 mm square, on which the children can mark vertical divisions and shade or colour boxes, 
 or instruct the children how to construct, mark and colour the strips using the ‘table’ facility of 
 Word or other software. 
 
 Divide each pair of strips to show ratios equal to the first one, 2:3 : 
  
   

  
   
 

 
Where can you find these ratios on your multiplication square? 
 
(Here we show the appropriate rows but we could equally well have chosen columns.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                    

                                    

At task 14 we pick up from task 7 the idea of ratio. We use our new table to 
read off equal ratios, i.e. equivalent fractions. A fraction is just a ratio written 
vertically. The difference is purely one of notation. ‘2:3’ and ‘	%	

&
’ mean the 

same thing. Here are two   Here are the corresponding 
equal ratios:    equivalent fractions: 
 
4:6 = 2:3     @

A
= %

&
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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Upper KS2 
 

 
15. (We anticipate task 22 here since the common denominator we find is the lowest common multiple 
 of 5 and 7.) 
 Run along the ‘5’ and ‘7’ rows till you hit the same number. 
 This is the denominator you require. 
 Run along the ‘2’ and ‘3’ rows till you hit the numbers vertically above those cells. 
 These are the numerators you require. 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

In task 15 we use the table to prepare two fractions, %
B
 and &

C
, for addition. As 

soon as the denominators of two fractions differ, we must distinguish the 
numerator, which is a quantity, from the denominator, which is a category. 
Only when the categories match does it make sense to add the quantities. 
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16. We use the table to show that  (3 × 2) × 5 = 3 × (2 × 5), 
 
demonstrating that the result of a multiplication does not depend on how we group the terms, 
i.e. that the operation is associative: 
 
In the two squares below we perform the same calculation in the above two ways. On the left we multiply 
3 by 2, and the product by 5; on the right we multiply 3 by the product of 2 and 5.  
 
          (3 × 2) × 5                                                                     3 × (2 × 5) 
 

X 1 2 3 4 5 6 7 8 9 10 
1 1 2 3 4 5 6 7 8 9 10 
2 2 4 6 8 10 12 14 16 18 20 
3 3 6 9 12 15 18 21 24 27 30 
4 4 8 12 16 20 24 28 32 36 40 
5 5 10 15 20 25 30 35 40 45 50 
6 6 12 18 24 30 36 42 48 54 60 
7 7 14 21 28 35 42 49 56 63 70 
8 8 16 24 32 40 48 56 64 72 80 
9 9 18 27 36 45 54 63 72 81 90 
10 10 20 30 40 50 60 70 80 90 100 

 
   
(The sequence of operations on the left is represented by the top right example of task 11. 
 
17. We complete a blank addition square to 10 + 10, and use it in conjunction with  
 our multiplication square to show that (4 + 3) × 2 = 4 × 2 + 3 × 2, 
 
 demonstrating that multiplication is distributive over addition. 
 
On the left below is an addition square with a multiplication square beneath; on the right is a 
multiplication square with an addition square beneath. Again we perform the same calculation in two 
different ways. One the left we add 3 to 4, then multiply the sum by 2; on the right we multiply 4 by 2, 
and 3 by 2, then add the two products.  
 

X 1 2 3 4 5 6 7 8 9 10 
1 1 2 3 4 5 6 7 8 9 10 
2 2 4 6 8 10 12 14 16 18 20 
3 3 6 9 12 15 18 21 24 27 30 
4 4 8 12 16 20 24 28 32 36 40 
5 5 10 15 20 25 30 35 40 45 50 
6 6 12 18 24 30 36 42 48 54 60 
7 7 14 21 28 35 42 49 56 63 70 
8 8 16 24 32 40 48 56 64 72 80 
9 9 18 27 36 45 54 63 72 81 90 
10 10 20 30 40 50 60 70 80 90 100 

 
 

Now that we know the commutative law, we shall feel free to use the rows 
and columns of our table interchangeably. 
 
Tasks 16 and 17 introduce the two other laws which govern the operation 
‘multiply’: the associative and distributive laws. Task 18 concerns the 
inverse operation. Tasks 19, 20 and 21, 22 show two ways in which two 
numbers can be compared: highest common factor (h.c.f.)/greatest common 
divisor (g.c.d) and lowest common multiple (l.c.m.). These quantities 
depend on the prime factorisation of the two numbers, whose study we meet 
in the following tasks. 
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              (4 + 3) × 2                  4 × 2 + 3× 2                                                              
 
+ 1 2 3 4 5 6 7 8 
1 2 3 4 5 6 7 8 9 
2 3 4 5 6 7 8 9 10 
3 4 5 6 7 8 9 10 11 
4 5 6 7 8 9 10 11 12 
5 6 7 8 9 10 11 12 13 
6 7 8 9 10 11 12 13 14 
7 8 9 10 11 12 13 14 15 
8 9 10 11 12 13 14 15 16 

 
 

    
+ 1 2 3 4 5 6 7 8 
1 2 3 4 5 6 7 8 9 
2 3 4 5 6 7 8 9 10 
3 4 5 6 7 8 9 10 11 
4 5 6 7 8 9 10 11 12 
5 6 7 8 9 10 11 12 13 
6 7 8 9 10 11 12 13 14 
7 8 9 10 11 12 13 14 15 
  9 10 11 12 13 14 15 16 

    
 
We can summarise this property iconically by dividing a rectangle. The dotted line represents the first 
operation; the solid line, the second: 
 

 
 
 
 
 

 
18. We use our table to show that 21 ÷ 7 = 3. We move a finger down the ‘7’ column to ‘21’, then 
 across to identify the ‘row’ heading. 
 
We illustrate the operation and its inverse with some other examples on the table below. Look at the 
orange arrows and the orange box. 
 What is 7 times 12? 
We move down from ‘7’ and across from ‘12’. Their product lies at the intersection of the row and the 
column. 
 What is 84 divided by 7? 
To perform the inverse operation to multiplication, we find 84 in the ‘7’ column and identify the row. 
 

X 1 2   5 6 7 8 
1 1 2 3 4 5 6 7 8 
 2 4 6 8 10 12 14 16 

3 3 6 9 12 15 18 21 24 
4 4 8 12 16 20 24 28 32 
5 5 10 15 20 25 30 35 40 
6 6 12 18 24 30 36 42 48 
7 7 14 21 28 35 42 49 56 
8 8 16 24 32 40 48 56 64 

 
 

X 1 2 3 4 5 6 7 8 
1 1 2 3 4 5 6 7 8 
2 2 4 6 8 10 12 14 16 
3 3 6 9 12 15 18 21 24 
4 4 8 12 16 20 24 28 32 
5 5 10 15 20 25 30 35 40 
6 6 12 18 24 30 36 42 48 
7 7 14 21 28 35 42 49 56 
8 8 16 24 32 40 48 56 64 

 
 

  

7 7 

2 2 
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19. What is the h.c.f. of 9 and 15? We move right from ‘1’ till we find the heading of the rightmost 
 column in which 9 and 15 occur. That heading gives the h.c.f., 3. 
 
On the same table we’ll illustrate another example. Look at the blue box and the red box and arrow. 
 What is the highest common factor (h.c.f.) of 8 and 12? 
We find 8 and 12 in the column headed ‘2’. We know therefore that 2 is a factor common to 8 and 12. 
But it is not the highest such factor. We need to find the rightmost column in which the two numbers 
occur. In the column headed ‘4’ we find 8 directly above 12. We need go no further because we know 
that no multiple of 4 lies between 8 and 12 and 4 must therefore be the highest factor common to both. 
 
In 20 we take the same example using the mathematical balance: 
 
20. We have two mathematical balances. On one we show ‘12’ on the right; on the other, ‘8’. 
 We balance the beams using the same number of hangers on the left in each case. What is the 
 largest number of hangers (what are the smallest peg numbers) we can use? 
 
    6            3                                      12                      4      2      8 
 
    II         IIII              I           II   IIII          I 
 
 The largest number of hangers is the required h.c.f. 
 
 
 
 
 
21. What is the l.c.m. of 6 and 10? Simultaneously, we go down from ‘6’ and across from ‘10’ until we 
 hit the same number. 
 
We’ll use the table for another example. Look at the green boxes and arrows: 
 What is the  l.c.m. of 8 and 12? 
We begin at the top of the ‘12’ column, and the lefthand end of the ‘8’ row. All the numbers in the first 
are multiples of 12, and all the numbers in the second are multiples of 8. However, only certain numbers 
in each are multiples of both. We require the lowest such. So we move down from ‘12’ and across from 
‘8’ till we find the same number. This is the lowest multiple common to the two numbers.  
 
For interactivities on common multiples, go to www.magicmathworks.org , then ‘Virtual Circus’, then 
‘Multiplication’, then any or all of the following: ‘Seesaw’, ‘Times Chimes’, ‘Gear Ratios’, ‘Magic 
Masks’. 
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
22. On the mathematical balance we add hangers to the ‘6’ peg on one side and the ‘10’ peg on the 
 other till we achieve balance. On either side the product ‘peg number’ times ‘hanger number’ 
 is the l.c.m.. In this case we must add 5 hangers on the left, 3 on the right. The l.c.m. of 6 and 10 is 
 therefore 30. 
 
 
     6                                        10 
                                          IIIII               III 
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Lower KS3 

 
23.  Which numbers occur only in row 1, 2, 3, 5, 7, 11, 13? What can we say of these numbers?  
They have no divisors apart from themselves and 1: they are prime numbers. 
 
24. How can we break down 60 into its prime factors? 
 
We find 60 somewhere in the body of the table and note its row and column numbers: 
 60 = 12 × 5. 
We know 5 is prime, 12 isn’t, so we repeat the process for 12. 
 12 = 2 × 6. Finally, 6 = 2 × 3. 
 So we have 60 = 12 × 5 = (2 × 6) × 5 = 2 × (2 × 3) × 5 = 2 × 2 × 3 × 5 = 2%. 3.5. 
 
Our 3 laws ensure that, wherever we start, we shall end with the same product. It’s worth asking the 
children if they find this reasonable. If they do, they’re accepting the truth of the fundamental theorem of 
arithmetic, which asserts that a number has a unique prime factorisation. 
 
We can interpret tasks 19 to 22 in the light of this. 
 
25.   How can we find the h.c.f. and l.c.m. of two numbers by comparing their prime factorisations?  
 
 9: 3 × 𝟑 
          15:      3× 5 
 
      h.c.f.:      3  
     l.c.m.: 𝟑 × 𝟑 × 𝟓 = 3%. 5 
 
Though the prime factorisation of a number is unique, we can group these factors in different ways. 
Hence the many divisors of 60. 
 
26. In how many ways can we show 60 as the product of two factors. (The children will have to 
 imagine the products which are off the scale of their 15 × 15 squares): 
 
 (1 × 60), (2 × 30), (3 × 20), (4 × 15), (5 × 12), (6 × 10).  
 
There are 12 divisors here, including 1 and 60. We obtain the above products by pairing them like this: 
 
             1    2    3    4    5    6    10    12    15    20    30    60 
 
 
 
  

Task 11 treated under another heading what was in fact the prime factorisation 
of 30. Tasks 23 to 27  address this topic. It’s best here to use the full   
15 x 15 square.  
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We can also show the 12 divisors on this 3-dimensional Hasse diagram: 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Each step in the x direction raises the power of 2 by one; likewise in the y direction for the power of 3, 
and in the z direction for the power of 5. 
 
We see from this that we can find the number of divisors by adding 1 to each index and multiplying the 
new index numbers together: 
 
60 = 2%. 3#. 5# . Number of divisors = (2 + 1) × (1 + 1) × (1 + 1) = 3 × 2 × 2 = 12. 
 
Such discussions will prepare the children for the next group of three tasks, 26, 27 and 28. 
 
27. Which numbers have exactly 1, 2, 3, 4 prime factors? 
 
See the table below. Because the heading numbers are prime, we see that the numbers in the blue boxes 
have exactly two distinct prime factors. So 15 is one. But so in the same row is, for example, 24, since 8 
is a power of 2. In fact only 23 products on the whole table have 3 distinct prime factors. On the table 
we’ve taken 15 and multiplied it by 2 to produce a number, 30, with this number of prime factors. Just 
one number has more: we’ve taken 14 and multiplied it by 15 to get the number in the red box, 210, with 
4 prime factors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
2 

4 

3 
6 

12
 

5 15 
30 

60 
10 

20 

x 

y 

z 
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

 
28. Where do all the instances of the same number lie? 
 
On the table below we’ve colour-coded the numbers up to 12. We see that each colour picks out a 
particular curve. Take 12 itself, for example. Call the column factor x, the row factor y. Then the equation 
of the curve through the points at the centres of the rust-coloured cells is xy = 12. Such a curve is called a 
rectangular hyperbola. 
 
For an animation go to www.magicmathworks.org , then ‘Virtual Circus’, ‘Number Patterns’, 
‘Multiplication Square’, ‘Contents: Prime v. Composite Numbers’. 

Tasks 28 and 29 concern the fact established in activities 23 to 27 that a 
number may have alternative factorisations. 
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
 
29. How many products are there on a 1×1, 2×2, 3×3, … times square? 
 
Look at the table below. If we look in the 4 x 4 square in the top left corner, we find there are only 9 
products, even though there are 16 cells. The dark blue cells are counted twice because they are 
duplicated by the axis of symmetry. But, even within the remaining patch, the number 4 occurs twice: 
once as 4 x 1, once as 2 x 2. By the time we get to the 9 x 9 square, the fraction of the products which are 
distinct has fallen to 36, well under half the number of cells, 81. Jon Millington found that you can write 
these 36 numbers on a set of 9 tetrahedra, one on each face, in such a way that the blocks display each of 
the times tables from 1 to 9.  
 
For an interactivity go to www.magicmathworks.org , then ‘Virtual Circus’, ‘Multiplication’, ‘Tables 
Race’. 
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
 
As the size of the table increases, the proportion of distinct products continues to trend downwards. 
However, because of the bunching of primes, the function is not monotone decreasing. 
 
Here is a 20 x 20 square. We’ve proceeded downwards row by row, entering only new products and 
giving their frequency at the end in red: 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 
           22 24 26 28 30 32 34 36 38 40 10 
      21  27  33  39 42 45 48 51 54 57 60 11 
          44  52 56  64 68 72 76 80 8 
    25  35   50 55  65 70 75  85 90 95 100 11 
          66  78 84  96 102 108 114 120 8 

      49  63  77  91 98 105 112 119 126 133 140 11 
          88  104   128 136 144 152 160 7 
        81  99  117  135  153 162 171 180 8 
          110  130  150  170  190 200 6 
          121 132 143 154 165 176 187 198 209 220 10 
            156 168  192 204 216 226 240 7 
            169 182 195 208 221 234 247 260 8 
             196 210 224 238 252 266 280 7 
              225  255 270 285 300 5 
               256 272 288 304 320 5 
                289 306 323 340 4 
                 364 382 360 3 
                  361 380 2 
                   400 1 

 
Notice that the prime columns are complete where the prime exceeds half of 20. Otherwise multiples will 
already have been taken care of. By contrast the ‘12’ column is almost empty. 12 is a ‘highly divisible’ 
number so we will have met many entries in other columns. (One might have expected the ‘18’ column to 
be less full, and so it would be if our square extended to ‘27’.) 
 

 
Rectangular numbers are so called because they count the number of dots in an array of that shape. Square 
numbers, triangular numbers likewise.  
 
For an interactivity go to www.magicmathworks.org, then ‘Virtual Circus’, ‘Number Patterns’, ‘2-D 
Number Shapes’. 
 
30.  All the numbers which lie beyond the first row and column are by definition rectangular numbers. 
 Where do all the square numbers lie (though they may also be found in other places)?  
 
The commutative law means the square has a symmetry axis running top left to bottom right. 
All the numbers which lie on this are squares. 
 
31. Where do the triangular numbers lie? 

Tasks 30 to 38 explore how and where figurate numbers occur on the 
multiplication square.  
30 to 34 treat two-dimensional figures; 35 to 38, three-dimensional ones. 
Though the topic rightly belongs to recreational mathematics, the patterns are 
instructive. 



 28 

 
See the table below. As we’ve seen in 29, the numbers in the chrome yellow boxes are the squares. The 
numbers in the blue boxes are the triangular numbers. Two consecutive triangular numbers make a 
square: 
 

                                                    
 
We’ve chosen two such pairs and shown with blue arrows the squares they sum to.  
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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For interactivities go to www.magicmathworks.org , then ‘Virtual Circus’, ‘Multiplication Square’, 
‘Contents: Triangles Again’ and ‘Contents: Triangles and Squares Again’. 
 
32. What happens when we add the first few numbers in a row? 
 
33. What happens when we add the numbers in a rectangular block? 
 
34. What happens when the block is square? 
 
We’ll take 32, 33, 34 one at a time: 
 
For interactivities go to www.magicmathworks.org , then ‘Virtual Circus’, ‘Number Patterns’, 
‘Multiplication Square’, ‘Contents: Triangles Yet Again’ and ‘Contents: Cubes Again’. 
        
 

 

  Here is one way to introduce 33 to a class who know the first four triangular numbers: 
  
 “Tanya’s table, choose a small number across and a small number down. 
  Add all the numbers in the rectangle with those borders but keep your answer secret.” 
 
 “Right, now tell me your ‘across’ and ‘down’ numbers.” 
 
 “4 and 3.” 
 
 Make a show of going across to the 4th triangular number and down to the 3rd triangular number 
 and locating the intersection. 
 
 “I think your answer’s 60. Am I right?” 
  
 
  
 
  

X 1 2 3 4 5 6 7 8 9 10 
1 1 2 3 4 5 6 7 8 9 10 
2 2 4 6 8 10 12 14 16 18 20 
3 3 6 9 12 15 18 21 24 27 30 
4 4 8 12 16 20 24 28 32 36 40 
5 5 10 15 20 25 30 35 40 45 50 
6 6 12 18 24 30 36 42 48 54 60 
7 7 14 21 28 35 42 49 56 63 70 
8 8 16 24 32 40 48 56 64 72 80 
9 9 18 27 36 45 54 63 72 81 90 
10 10 20 30 40 50 60 70 80 90 100 

The sum of the palest green row is the 
4th triangular number, 𝑇@. The sum of 
the next, twice this; of the next, three 
times this. So the grand total is 𝑇@ × 𝑇&. 
 
If we add a 4th row, the total is 𝑇@%. 
 
The figure below shows that  
𝑇@% = 1 × 1% + 2 × 2% + 3 × 3%	+	4 ×
4%, 
i.e. 𝑇@% = 1& + 2& + 3& + 4&. 
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For the 3-dimensional figurate numbers which follow, go to www.magicmathworks.org then ‘Virtual 
Circus’, then ‘Number Patterns’, then ‘3-D Number Shapes’. 
 
We sum the entries along diagonals running top right to bottom left. 
 
35. What happens when the diagonal lies at 45°? 
 
36. What happens when we total two such adjacent diagonals? … and then sum the entries vertically? 
  
We get a steeper diagonal. 
 
37. What happens when we total two adjacent steep diagonals horizontally? 
 
We’ll take 35, 36, 37 one at a time: 
 
For interactivities go to www.magicmathworks.org , then ‘Virtual Circus’, ‘Number Patterns’, 
‘Multiplication Square’. ‘Contents: Tetrahedra Again’ and ‘Contents: Cubes Again’. 
 

4

4

3

2

1
321
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The 5th tetrahedral number is the sum of the first 5 triangular numbers.  
 
On the left we show the tetrahedron standing on a base so that the horizontal layers are the constituent 
triangular numbers: 15 + 10 + 6 + 3 + 1. 
 
On the right we show it standing on an edge. The layers are rectangles:  
(1 x 5), (2 x 4), (3 x 3), (4 x 2), (5 x 1). 
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These products lie here on the multiplication square: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

X 
 

1 2 3 4 5 6 7 8 9 

1 
 

1 2 3 4 5 6 7 8 9 

2 
 

2 4 6 8 10 12 14 16 18 

3 
 

3 6 9 12 15 18 21 24 27 

4 
 

4 8 12 16 20 24 28 32 36 

5 
 

5 10 15 20 25 30 35 40 45 

6 
 

6 12 18 24 30 36 42 48 54 

7 
 

7 14 21 28 35 42 49 56 63 

8 
 

8 16 24 32 40 48 56 64 72 

9 
 

9 18 27 36 45 54 63 72 81 

 
 
 

X 
 

1 2 3 4 5 6 7 8 9 

1 
 

1 2 3 4 5 6 7 8 9 

2 
 

2 4 6 8 10 12 14 16 18 

3 
 

3 6 9 12 15 18 21 24 27 

4 
 

4 8 12 16 20 24 28 32 36 

5 
 

5 10 15 20 25 30 35 40 45 

6 
 

6 12 18 24 30 36 42 48 54 

7 
 

7 14 21 28 35 42 49 56 63 

8 
 

8 16 24 32 40 48 56 64 72 

9 
 

9 18 27 36 45 54 63 72 81 

 
 
 

We’ve seen that two consecutive 
triangular numbers make a square 
number. 
 
In three dimensions, comparing two 
consecutive tetrahedra slice by 
horizontal slice, we see that they 
make a pyramid. 
 
Below we show the diagonals which 
sum to the 4th and 5th tetrahedral 
numbers. 
 
Adding cells vertically, we have a 
steeper diagonal whose cells sum to 
the 5th pyramidal number. 

If we stick two consecutive 
pyramids base to base, we have 
an octahedron. 
 
On the square below we’ve 
shown the 5th and 6th pyramidal 
numbers. This time we’ve added 
the cells horizontally. The result 
is again a 45° diagonal, but the 
entries are spaced out. 
 
Adding the numbers in the green 
boxes, we have the 5th octahedral 
number. 
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
 
38. We build our ‘1’, 2’, ‘3’ and ‘4’ staircases alongside each other on a Multilink base. 
 What we find we’ve done is to graph the 4 x 4 multiplication square vertically.  
 
Though we now take the commutative law for granted, it comes as a surprise that, if we colour-code the 
individual ‘times tables’ as below, we can trace identical staircases going the other way. (This is the 
model from task 5.) 
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Upper KS3 

 
 
39. How do the powers of 2, 3, 5, … appear on the number line? 
 
40. What patterns does this structure give rise to on the multiplication square? 
 
We’ll take questions 39 and 40 in order: 
 
These figures are block graphs. The height of each block in the first two rows is the power of 2 the 
number contains. Note how the whole of the first row nests in the two halves of the second: the pattern 
has a fractal structure. 
 
 
               
               
               
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
 
                               
                               
                               
                               
                               

 
 
The height of each block below is the power of 3 the number contains. The pattern is different: we have a 
new power at the end of a cycle of three instead of two, but it has the same fractal structure.  
 
 
                               
                               
                               
                               
  3   6   9                       

In activities 39 to 41 we investigate how the prime factorisations of products 
show themselves on the multiplication square when we select particular primes 
and products of primes.  
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In each case, a tower of a new height contains the symmetry axis for the block containing all lower 
powers to left and right – we can think of a baron in his castle commanding all the lands around whose 
rulers are less powerful. 
 
On the next pages, where products are shown in a multiplication square, this pattern appears in two 
dimensions. We can imagine we’re looking down on a cityscape of three-dimensional towers. 
 
We’ve marked in black the squares which have the vertical and diagonal symmetry axes of the 
geometrical square. 
 
First, powers of  2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
8127189
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
 
Here is an alternative representation. The successive squares (of which 3 are picked out with a bold 
line) are set within the 2 x 2 table (trivially), the 4 x 4 table, the 8 x 8 table, ... and in corresponding 
quadrants. They are centred on even powers of 2 and the nested squares (picked out with a light line) have 
equal powers at their vertices. 
 
 
 
 
 
 
 
 
 
 
 
 
 

45°
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15

14

13
12
11
10
9
8
7
6
5

4
3
2

1

X    1    2    3    4    5    6    7   8    9   10   11   12   13   14   15
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Now powers of 3: 
 
 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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Now powers of 5: 
 
 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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41. Where do common multiples of 2 × 3 = 6, 2 × 5 = 10, 3 × 5 = 15	and other composite numbers 
lie? 
 
First, 6: 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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Now 10: 
 
 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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Now 15: 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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Now  12, where the prime factor 2 is repeated: 
 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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We see that multiples of a prime p form a gridiron pattern, in which the gaps are empty squares 
 (p – 1) x (p – 1): 
      Where the number is composite we have a pattern of  
    2              3                        5  coloured cells within the square: 
    

       
     
     
    

  
 
 
 
 
In all cases this pattern has the full symmetry of the geometrical square. 
 

 
 
42. What patterns appear if we make a square (n – 1) by (n – 1) and write the products 
 modulo n, e.g. an 8 x 8 square modulo 9? 
 
 Here’s an activity for Y6s or 7s. Write the numbers 1 to 8 on blank cards. Shuffle them and hand 
 one each to a group so that nobody except that group knows what number they’ve been allocated. 
 Their first task is to work out the digital roots of the multiples, up to and including the 8th. With 
 manuscript paper they make their answers the degrees of the musical scale, I suggest choosing C 
 major as the key and making the B below middle C the 0th degree. One of the group then plays 
 their phrase on a recorder or keyboard. The other groups must guess their number. Once all are 
 known, the groups should be asked to play their phrases again and people should comment on 
 what their ears notice. If they detect a mirror pair (or fail to), display the (or a) notated pair on a 
 visualiser. Once all the pairs have been identified, the question is: What is special about the 
 pairs?The children should complete the whole square, when the point symmetry becomes 
 apparent. The mirror tunes fall symmetrically either side of a blue line in the square below. 
 
 
43. What if n is prime, e.g. a 10 by 10 square, modulo 11? 

   
     
   

      
      
      
      
      
      

 

       
       
       
       
       
       
       

  

In tasks 42 and 43 we represent the products to a particular modulus. 
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We’ll compare the results in cases 42 and 43: 
 
In the 8 x 8 square below the numbers are written mod 9. We find the two symmetry axes in red, which, 
as already noted, imply point symmetry (rotation symmetry of order 2). 
 
 If we reflect a number in a blue axis we find the additive complement with respect to 9. 
 
 
 
 
 
 
 
 
X 
 

1 2 3 4 5 6 7 8 

 1 
 

1 2 3 4 5 6 7 8 

 2 
 

2 4 6 8 1 3 5 7 

3 
 

3 6 0 3 6 0 3 6 

4 
 

4 8 3 7 2 6 1 5 

5 
 

5 1 6 2 7 3 8 4 

6 
 

6 3 0 6 3 0 6 3 

7 
 

7 5 3 1 8 6 4 2 

8 
 

8 7 6 5 4 3 2 1 

 
 
Here are the 8 melodies for 41, grouped in mirror pairs: 
 

 
 

 
 
In the next 10 x 10 square the numbers are written mod 11, a prime. Again we have two symmetry axes. 
This time the interesting feature is that all the numbers 1 to 10 appear in each row and each column: we 
have a Latin square. In fact the numbers 1 to (p – 1), where p is a prime, form a group under 
multiplication. 
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X 
 

1 2 3 4 5 6 7 8 9 10 

1 
 

1 2 3 4 5 6 7 8 9 10 

2 
 

2 4 6 8 10 1 3 5 7 9 

3 
 

3 6 9 1 4 7 10 2 5 8 

4 
 

4 8 1 5 9 2 6 10 3 7 

5 
 

5 10 4 9 3 8 2 7 1 6 

6 
 

6 1 7 2 8 3 9 4 10 5 

7 
 

7 3 10 6 2 9 5 1 8 4 

8 
 

8 5 2 10 7 4 1 9 6 3 

9 
 

9 7 5 3 1 10 8 6 4 2 

10 
 

10 9 8 7 6 5 4 3 2 1 

 
 
Lower KS4 

 
 
44. What special relation appears when we isolate squares or rectangles within the multiplication 
 square? 
 

In tasks 44 to 48 we study the properties of particular configurations of cells. 
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 I recommend that you use a multiplication square with a 2 cm grid and build rectangular frames 
 with Multilink cubes which the children can slide around on it. 
 
See the table below. The products of the blue numbers and the green numbers are equal. 
 
Take a rectangle (k + 1) cells wide and (l + 1) cells high. 
 
Take the top left product to be ab. 
 
Then the blue product = top left x bottom right = [(𝑎𝑏)][(𝑎 + 𝑘)(𝑏 + 𝑙)], 
the green product = bottom left x top right = [𝑎(𝑏 + 𝑙)] [(𝑎 + 𝑘)𝑏] = the blue product. 
 
 
 
  
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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45. We investigate why numbers at the centres of rows, columns and any configuration with 4-
 fold rotation symmetry are the mean of those shapes. 
 
See the table below. 
 
 
 
 
 
 
 
 
 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
 
 
 
Look at the orange row. 
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It is an arithmetic progression. The mean is the centre number and the total 5 times this. 
Each number to the right of the ‘12’ exceeds 12 by the amount the matching number on the left falls short 
of it.  
 
The same argument applies to the green column. 
 
Now look at the blue cross.  
 
Make the centre number the product ab. Working round the outside from the top left cell, we have: 
 
(𝑎 − 1)(𝑏 − 1) = 𝑎𝑏 − 𝑎 − 𝑏 + 1, 
(𝑎 + 1)(𝑏 − 1) = 𝑎𝑏 − 𝑎 + 𝑏 − 1, 
(𝑎 + 1)(𝑏 + 1) = 𝑎𝑏 + 𝑎 + 𝑏 + 1, 
(𝑎 − 1)(𝑏 + 1) = 𝑎𝑏 + 𝑎 − 𝑏 − 1 . 
 
Adding, we have 4ab. We can confirm that any design with rotation symmetry of order 4, like the 
magenta catherine wheel, will sum to the centre number times the number of cells. 
And this applies to the cyan square (in which we’ve embedded the magenta wheel) …  
 
… and the  multiplication square as a whole. Thus if our square bordering the axes is (2n + 1)× (2𝑛 + 1), 
the total is (2𝑛 + 1)% × the centre number = (2𝑛 + 1)% × (𝑛 + 1)% or 
 [(𝑛 + 1)(2𝑛 + 1)]%. 
 
We can check this expression. We know from 32 that the total for a square bordering the axes of the table 
is	𝑇%+M#%.  
𝑇N =

N(NM#)
%

 . So 𝑇%+M# =
(%+M#)(%+M%)

%
= (𝑛 + 1)(2𝑛 + 1). 

So in this case 𝑇%+M#% =[(𝑛 + 1)(2𝑛 + 1)]%, matching our first expression. 
 
The relation we’ve found applies when the number of cells is even, except in that case the mean will be 

an integer + 1/4. The total for a square 2n by 2n = 𝑇%+%  = O%+(%+M#)
%

P
%
= [𝑛(2𝑛 + 1)]%. 

Since there are [2𝑛]% cells in the square,  

the mean =  O+(%+M#)
%+

P
%
= O%+M#

%
P
%
= @+QM@+M#

@
= @+(+M#)M#

@
= 𝑛(𝑛 + 1) + #

@
. 

 
 
 
46. We identify tetrahedral numbers as differences of diagonal sums, and show how it works in the 
 top left corner of the table, where the leading diagonal is a sum of  squares, i.e. a pyramidal 
 number. 
 
For this, difficult, investigation, begin with https://nrich.maths.org/2821. 
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X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
In each of the diagonal crosses we subtract the total of the red numbers from the total of the blue crosses. 
What do we find? 
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We shall distinguish crosses enclosed by a square with an even number, 2n, of cells along an edge, and 
those enclosed by a square with an odd number of squares, 2n + 1, along an edge. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 

 
When we’ve made the subtractions shown, we find we can pair the expressions in such a way that we 
produce the sequence of odd squares down to 1 (produced by the block in the middle of the diagram). The 
square number 𝑆N  is the sum of the adjacent triangular numbers 𝑇N and 𝑇NS# (as noted in 29). This is the 
result: 
 
 𝑆%+S#                  𝑆%+S&	               𝑆%+SB           …          𝑆# 
 
      𝑇%+S#   𝑇%+S%      𝑇%+S&    𝑇%+S@     𝑇%+SB    𝑇%+SA   …         𝑇# 
 
We obtain all the triangular numbers from 𝑇%+S# down to 𝑇#. The sum of the first k triangular numbers is 
the kth tetrahedral number, 𝑇𝑒𝑡N, so in our case 𝑇𝑒𝑡%+S# 
 
                                                                    2n + 1 cells 
 
 

 
 

 
 
 

𝑎𝑏 
(𝑎 + 1)(𝑏 + 1) 

(𝑎 + 2𝑛 − 1)𝑏 
(𝑎 + 2𝑛 − 2)(𝑏 + 1)

+ 1) 

(𝑎 + 𝑛 − 1)(𝑏 + 𝑛 − 1) (𝑎 + 𝑛)(𝑏 + 𝑛 − 1) 

(𝑎 + 𝑛 − 1)(𝑏 + 𝑛) (𝑎 + 𝑛)(𝑏 + 𝑛) 

2n cells 

𝑎(𝑏 + 2𝑛 − 1) 
(𝑎 + 1)(𝑏 + 2𝑛 − 2) (𝑎 + 2𝑛 − 2)(𝑏 + 2𝑛 − 2) 

(𝑎 + 2𝑛 − 1)(𝑏 + 2𝑛 − 1) 

Subtract 

Subtract 

(2𝑛 − 1)%     (2𝑛 − 3)% 

𝑎𝑏 
(𝑎 + 1)(𝑏 + 1) 

(𝑎 + 2𝑛)𝑏 
(𝑎 + 2𝑛 − 1)(𝑏 + 1)

+ 1) 

Subtract 
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This time we obtain the even squares, leading to 𝑇𝑒𝑡%+. 
 
We can summarise the two results: if the enclosing square has side s, the difference of the sums is 𝑇𝑒𝑡VS#. 
 
Look at the cross in the top left hand corner of the multiplication square. The blue numbers are squares so 
they sum to the 6th pyramidal number, 𝑃𝑦𝑟A.	 
The red numbers must therefore sum to 𝑃𝑦𝑟A − 𝑇𝑒𝑡B = 𝑇𝑒𝑡A. This is what we would expect from 34. 
 
 
47. We move a set square around on the multiplication square and find the following. We note the 
 cells at the edge which the set square cuts and fill in alternate ones between, e.g. the pale blue 
 squares below. We find that the right angle of the set square lies in the cell which is their sum. 
 
 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

(𝑎 + 𝑛 − 1)(𝑏 + 𝑛 + 1) 

(𝑎 + 𝑛 + 1)(𝑏 + 𝑛 − 1) (𝑎 + 𝑛 − 1)(𝑏 + 𝑛 − 1) 

(𝑎 + 2𝑛)(𝑏 + 2𝑛) 

(𝑎 + 𝑛)(𝑏 + 𝑛) 

(𝑎 + 2𝑛 − 1)(𝑏 + 2𝑛 − 1) 

(𝑎 + 𝑛 + 1)(𝑏 + 𝑛 + 1) 

Subtract 

(2𝑛)%     (2𝑛 − 2)% 

a(𝑏 + 2𝑛) 
(𝑎 + 1)(𝑏 + 2𝑛 − 1) 
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13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
 
Along the top row we see below that we have (2n + 1) cells. Their mean is a and therefore their total,  
(2n + 1)a. But we also see that the number beneath lies in row (2n+1). So a is the multiplicand, (2n +1) 
the multiplier, the product therefore (2n + 1)a: 
 

X 
 

  
 

       

 
 

    a     

 
 

         

 
 

         

 
 

         

(2n+1) 
 

    (2n+1)a     

 
 

         

 
 

         

 
 

         

 
 

         

 
 
48. We investigate the pairings of ‘snakes’ and ‘ladders’ on the multiplication square. Take two rows. 
 For every ‘ladder’ joining a number in the first row to one k bigger in the second, there’s a 
 ‘snake’ joining a number in the first row to one k smaller in the second.  
 
 
On the square below we have chosen pairs of rows, for example 5 and 6.  For each pair we have chosen a 
small number, in that case 2, and joined cells with a blue ‘ladder’ showing that number as an increase, 
and cells with a red ‘snake’ showing that number as a decrease. Symmetry dictates that the mean of the 
numbers at the heads of the arrows is equal to the mean of the numbers at the tails of the arrows, in our 
example, 30. We’ve shown these numbers in green. Correspondingly, the green cells are equidistant from 
the blue and red cells in their row. In the case of rows 13 and 14 we see that the mean does not label a cell 

 

n blue cells n blue cells 
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in row 14 since it falls midway between 84 and 98. In rows 2 and 4 the snake and ladder arrive at the 
same square. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 
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49. We find a way to use a small square to multiply big numbers. 
 
We can extend the range of our square. 
 
In our place value number system each digit multiplies a different power of 10. 
For example, 243 = 2 × 10% + 4 × 10# + 3, 17 = 1 × 10# + 7. 
As a result, when we multiply the two numbers, each product of digits multiplies a particular power of 10. 
For example, the ‘2’ in the first number times the ‘1’ in the second number multiply 10% ×	10# =
10%M# = 10&.  
We can represent the product by bunching sticks in this way: 

 
 
 
On the right we have collected up the 6 products in the cells upper right. Where they exceed 10, there is a 
‘carry’ but, by taking advantage of the diagonal stripes, we ensure that these line up correctly. The boxes 
in the third row total the stripes. But again there may be a carry so we need another set of diagonal stripes 
in these before we can make the final addition in bold print. For a history of this famous method begin 
with the Wikipedia entry under ‘Lattice multiplication’. 
 
In the ‘Cuisenaire product finder’ you have a a strip of acetate, the width of a row or column on the 
multiplication square. There is a strip of a distinct colour for each decimal place. In the above example, 
where the ‘4’ strip crosses the ‘7’ strip, the physical process of colour subtraction will result in a new 

4 1 3 1
3 0

1
3

1 1

2 4 3

4
1

8
2

12 7

1

342

7

1

342

49 exploits the idea of place value, the principle on which our number system is 
based. 
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colour, representing the number of 10s, 28. This is the same as the colour observed where the ‘3’ strip 
crosses the ‘1’ strip, 3. Where strips of the same colour cross, in our case for example the ‘4’ and the ‘1’, 
both of which stand for 10s, there is a deepening of the shade. Where the ‘2’ strip crosses the ‘7’ strip 
would ideally give the same colour as where the ‘4’ strip crosses the ‘1’ strip, as in our stick diagram, but 
that’s not physically possible. The result is 6 different colours or shades. It remains to enter the 6 totals in 
a lattice like ours to compute the result. Here is the square with those settings: 
 
X 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 
 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 
 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 
 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 
 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 
 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 
 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 
 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 
 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 
 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 
 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 
 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 
 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 
 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
 

 
50. What patterns do we find? 
 
The yellow cells contain the product ‘+ 6’; the blue cells, ‘- 6’.  
 
 
 

In 50 and 51 we extend the multiplication square to the signed integers. 
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       0        

 
 

       0        

 
 

        0        

 
 

       0        

 
 

       0        

 
 

       0        

 
 

       0        

 0 
 

 0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 
 

       0        

 
 

       0        

 
 

       0        

 
 

       0        

 
 

       0        

 
 

       0        

 
 

       0        

 
 
Picture this as a landscape, where ‘0’ is sea level.  We see two limbs of the yellow rectangular hyperbola, 
two limbs of the blue one. The yellow contour shows land lying as far above sea level as the blue contour 
shows land lying below it. The model in the photgraph below uses Centicubes for the product towers. 
 
51. Which of the relations we have found in 44, 45 hold on the enlarged square? 
 
The symmetry of the table ensures that the relations we found in 44 and 45 still hold. 
 

-7 

-7 +7 

+7 

X 
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       0        

 
 

 30      0 -6       

 
 

       0        

 
 

 20      0 -4       

 
 

       0   -9     

 
 

       0  -4      

 
 

       0 -1       

 0 
 

 0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 
 

   -3    0 1  3  5   

 
 

    -4   0  4    12  

 
 

     -3  0 3  9    21 
 
 

       0    16    

 
 

       0   15     

 
 

       0  12      

 
 

       0 7       

 
 
Upper KS4 
 

 
 
52. Where are the hyperbolas? Where are the parabolas? 
 

-7 

-7 +7 

+7 

X 

In 52, our final activity, we fill in the gaps in our ‘integer’ surface by showing 
the products of all the real numbers. 
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The multiplication square we used for the negative integers was pixelated: we used cells for the integers. 
If we are to fill in all the real numbers, for each axis we must swap the counting strip for the number line, 
where each number is represented by a point. To put it another way, the resolution of our pixelated image 
must be infinite. 
 
We begin with the rationals.  
 
On the first square we show the product of 5/7 and 2/3. We could retain the counting strips, so that the 
green cell represents a product. For teaching purposes this is handy since we can determine numerator 
and denominator simply by counting cells, as we can for the integers. The snag is, we need a different 
strip for each denominator. Better then to use number lines, so that our product is the vertex arrowed in 
the bottom right hand corner: 
 
 

          
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The product is modelled by the area of the rectangle defined by the vertex and axes. 
 
The same remarks apply to terminating decimals. 
 
When we consider irrational numbers, by definition no cell is small enough, so we must use number lines. 
 
The landscape we identified in 50 is now continuous. In the two planes of symmetry containing the 
square numbers we can now trace parabolas. In fact we can do so in all the planes parallel to these. The 
result is a surface whose contour lines are rectangular hyperbolas and whose vertical transects are 
parabolas: the hyperbolic paraboloid. 
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The red dashed lines indicate the vertical planes of symmetry. Parabolas with their vertices directed 
downwards lie in planes parallel to ‘1’;  those the other way up, in planes parallel to ‘2’. The blue lines 
indicate planes which contain the asymptotes of the rectangular hyperbolas, which lie in horizontal 
planes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
   
 
 
 
 
 
 
 
 
 
This picture shows the surface for the signed integers on the left, the reals on the right. In the second 
model we have taken advantage of the fact that the hyperbolic paraboloid is a ruled surface. We can think 
of a ruling as a particular ‘times table’ (singular), though a right triangle rather than a staircase since we 
have filled in all the numbers on the number line. 
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