
         Changing one uniform tiling into another 
 

Among the most commonly studied tilings are those where every tile is a regular polygon and 

every vertex is the same: uniform tilings. Because each vertex is the same, we can name the 

tilings in a simple way: we list in order the polygons we meet as we make a circuit of a 

vertex. This way, for example, we can identify and distinguish the two tilings of squares and 

triangles: 3.3.3.4.4 and 3.3.4.3.4. If we cycle the numbers or reverse their order, we still get 

the same tilings. Only five regular polygons contribute to uniform tilings. Their interior 

angles are all multiples of 15°. In this diagram each tiling is an annulus and the polygons 

which pack round a vertex are shown with their correct interior angles: 

 

  
The centres of rotation symmetry are of only four orders: 2, 3, 4 & 6. These facts suggest that 

it should be possible to derive one tiling from another by a simple change. This will be our 

task in this investigation. The operations we shall use are our own. Other authors use 

different ones. We shall distinguish static operations, where we derive the new tiling by 

picking out features on the old one, from dynamic operations, where we create the new tiling 

by moving something. 

 

Unless specified otherwise, ‘triangles’ will mean ‘equilateral triangles’, ‘hexagons’, ‘regular 

hexagons’, etc. 

 

(A) Static operations 
 

1. Adding and removing tiles  

 

(a) In the first example all we do is remove tiles from 3.3.3.3.3.3, the isometric grid. 

(Equivalently we could remove edges.) The result is 3.3.3.3.6. The hexagons are bordered 
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with triangles. The tiling has a left- and right-handed form, shown here in blue and green. 

First we mark the centres of rotation symmetry and their orders. The rhombuses are lattice 

cells which produce the whole tiling by translation. 

 

3.3.3.3.6 

 

 
 

 
 

 

 

(b) In the next three examples we begin with 3.12.12. We then inscribe a square in a 12-gon. 

If we inscribe squares in neighbouring 12-gons so that each shares a vertex with the last, we 

find we have produced 3.4.6.4. Finally we remove squares to leave 12-gons again, but larger 

ones this time, bordered by the remaining squares and hexagons, to form 4.6.12. 
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3.12.12:  

 

 
 

 

3.4.6.4: 

 
 

 

 

 

 

 

 

 



4.6.12: 

 
 

 

If we inscribe triangles in the 12-gons of 3.12.12 instead of squares, we get this distorted  

3.6.3.6, a tiling of triangles and hexagons with equal sides and alternating angles of 90° and 

150°: 

 

 

 
 

 

 



For 3.6.3.6 itself we need to locate the triangle vertices at midpoints of 12-gon sides: 

 

 
 

 

It is always possible to remove tiles (or equivalently edges) from a uniform tiling to create a 

motif which tiles the plane by translation. Here our original is 3.3.4.3.4: 

 



 
 

2. Joining tile centres 

 

In section 1 we preserved edges in moving from one tiling to the next. In this section we join 

centres.  

 

(a) Again we start with 3.12.12. In the upper part of the figure we join 12-gon centres to form 

3.3.3.3.3.3. In the lower part we join triangle centres to form 6.6.6. In the middle we show 

that one set of edges bisects the other set at right angles. We say that 3.3.3.3.3.3 and 6.6.6 are 

dual tilings. This being the case, the symmetry elements are the same and identically 

arranged so we can show them on the same figure: 

 

 



 
 

What happens if we join polygon centres in the tilings we derived from 3.12.12? 

 

(b) If we join the square centres in 3.4.6.4, we get 3.6.3.6. 

 

 

  
 

 



 
 

If we join the square centres in 4.6.12, we also get 3.6.3.6, but with an increase in scale: 

 

 
 
3. Using algebra 

 

The code for a tiling guarantees that the interior angles round a vertex sum to 360°. 

Unfortunately, this necessary condition for a tiling is not sufficient. But let us see how many 

valid tilings we can derive just using the associative and commutative laws of algebra and 

cycling the numbers.  



We have these angular equivalences: (3.3) ≡ 6, (3.4) ≡ 12, (4.4.4) ≡ (8.8), (4.4) ≡ (3.6). 

Blindly following the algebra, this gives us: 

3.3.3.3.3.3 ≡ 3.3.3.3. (3.3) ≡ 3.3.3.3.6. 

       ≡ 3.3. (3.3). (3.3) ≡ 3.3.6.6: not a valid tiling. 

                  ≡ 3. (3.3). 3. (3.3) ≡ 3.6.3.6. 

3.3.3.4.4 ≡ (3.3). (3.4). 4 ≡ 6.12.4 ≡ 4.6.12. 

               ≡ 3.3. (3.4). 4 ≡ 3.3.12.4: not a valid tiling. 

               ≡ 3.3.3. (4.4) ≡ 3.3.3. (3.6) ≡ 3.3.3.3.6. 
               ≡ 3.3. (3.4). 4 ≡ 3.3. (4.3). 4 ≡ 3.3.4.3.4. 

                                                               ≡ 3.4.3.3.4 ≡ 3.4. (3.3). 4 ≡ 3.4.6.4. 

                                                               ≡ 3. (3.4). (3.4) ≡ 3.12.12. 

4.4.4.4 ≡ (4.4). (4.4) ≡ (3.6). (3.6) ≡ 3.6.3.6. 

4.4.4.4 ≡ 4. (4.4.4) ≡ 4. (8.8) ≡ 4.8.8. 

 

(B) Dynamic operations 
 

1. Hinged tiles 

 

(a) We start with 4.4.4.4, a grid of squares. 

 

 
We hinge the square tiles at corners. The cyan dots show which pairs are joined. We stretch 

the grid vertically. Rhombic holes develop until these have an angle of 60°, at which point we 

have pairs of equilateral triangles and consequently the tiling 3.3.4.3.4: 

 

 
If we continue to stretch the tiling, we pass through a stage where again we have 4.4.4.4 but 

each tile is bordered by 4 square holes. Past this point we go through a stage where we return 

to 3.3.4.3.4, the rhombuses lying at right angles to their former orientation, until finally the 

grid closes up again. 

 

Here is how to set up a GeoGebra animation. 

 



 
 

 

1. Decide on a unit of length and use ‘Circle: centre & radius’. The pink centre will be your 

fixed point. 

 

2. On the circumference centre two equal circles. ‘Intersect’ these new circles. You have now 

got your basic rhombus.  

 

3. Using ‘Regular polygon’ you can construct squares outwards on all four sides, of which 

the two on the right are shown.  

 

If you now centre two more equal circles on their right hand vertices and intersect them, you 

will be able to complete a rhombus which moves 90° out of phase with the first. 

 

Move either of the cyan points to articulate the figure through the whole cycle described 

above. 

  

 

 

 

 

 

 
 

 

Returning to (A) 1, it’s interesting to start with 4.8.8 instead of 3.12.12. If again we inscribe 

squares in the octagons joined according to our previous rule, we get this: 

 



 
 

It is a stage in the unfolding of our grid of square tiles where the angle of the rhombic hole is 

45°. 

 

(b) For our second example under this heading we begin again with 4.4.4.4 but omit certain 

squares. A cyan dot shows a join. A red circle shows that there is no join. Note in particular 

the case where a tile is joined to another diagonally but not to the tile between them. The 

result is 3.4.6.4. Notice that the grid to be flexed has translational symmetry only.  

But, bearing in mind the symmetry of the result, we realise that we could give the figure 

quarter-turns and draw it in any of those four orientations. We deform the grid uniformly 

until we find the detached vertices joining up. The colouring shows how each tromino 

becomes a triangle with a square on each side. 

 



 
 

This is how to animate the mechanism using GeoGebra: 

 

 

 

Using ‘Circle: centre & radius’ and ‘Regular 

polygon’, construct the pink-centred circle 

and square lower left. 

 

On another radius construct the square upper 

right. 

 

Construct an equal circle centred on the cyan 

vertex. 

 

‘Intersect’ the new circle and the square 

bottom left. 

 

Construct the third square. 

 

Move the cyan point and the green vertex 

will slide on the upper edge of the first 

square. 

 

 

 



 

2. Hinged rods 

 

(a) This first example is taken from Hugo Steinhaus. 

 

Again we begin with a grid of squares. But this time they have no interiors. We omit edges so 

as to leave staggered dominoes, like the bricks in a wall. We stretch the grid horizontally. The 

result is 6.6.6: 

 

 
(b) Now for stage 2. We take Steinhaus’ 6.6.6. We preserve hexagons separated by one edge 

and distort the others into triangles two units on a side. Their subdivision into 4 smaller 

triangles gives us 3.3.3.3.6 again: 

 

 
 

 

We demonstrate this transformation with Geomag: 

 



         

 

 

(c) As an alternative stage 2, we continue to stretch 6.6.6 horizontally until the inclined edges 

meet at 60°. At this point each hexagon consists of a central square bordered by two triangles 

and we have 3.3.3.4.4: 

 

 
 

 

The orders of rotation symmetry are 2 in each case. 

 

 

 

 

 

 

 

 

 

 

 

With GeoGebra one way to animate the grid is as shown below. We set up a horizontal and a 

vertical reference line. Thereon we create our unit of distance with the ‘Circle: centre & 

radius’ tool. We anchor a circle to a horizontal line with the ‘Intersect’ tool. (This will 

 



produce two points. We hide the one we do not want with the ‘Show/Hide’ tool.) We need 

our vertical reference line to line up vertices vertically. We click on ‘Parallel line’ and locate 

the point where the vertical reference line cuts the upper left hand circle. We deform the 

whole grid by clicking on the pink point, which pivots round the cyan point. 

 

 

 
 

(d) If we replace Steinhaus’ wall, where the bricks are dominoes, with this wall, where 

monominoes alternate with trominoes, we get 4.8.8: 

 



 
 

 

(e) We can model the distorted 3.6.3.6 in (A) 1. (b) with hinged rods. It is an example of a 

tiling where a polygon with an even number of equal sides has angles which alternate in size. 

The result is a tiling which preserves the rotation symmetry of the original but loses all mirror 

lines. Here is a distorted 4.8.8 where  the octagon has angles of 120° and 150°. The octagon 

centres and square centres shown still define equal squares: 

 

 
In this distorted 4.6.12 the squares have been preserved but the hexagons have angles of 110° 

and 130°, and the 12-gons, 140° and 160°: 



 

 
  

3. Stretching a sheet with embedded tiles 

 

The tile centres are stuck to a rubber sheet, which we stetch uniformly, that is, by the same 

factor in two perpendicular directions. This is the two-dimensional equivalent of an 

expanding universe with tiles instead of galaxies. (Alternatively, instead of a rubber sheet 

being stretched, we can fix the tile centres and shrink the tiles.) 

 

(a) We begin with 4.4.4.4 but remove alternate squares to leave a checkboard pattern. We 

stretch our sheet until the distance between tile corners is equal to a tile side. At that point we 

have 4.8.8. 

 



 
 

 
 

(b) We can produce 3.4.6.4, starting from 6.6.6. We stretch the rubber till the hexagons are 

separated by one side length: 
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(c) We can derive 3.12.12 from 3.6.3.6 by stretching the rubber till the triangles are separated 

from the nearest hexagons by one side length: 

 

 


