## The Purple Set Manual

## Station

Physical experience
Mental activities
Explicit content

## Handshakes

Looping rubber bands over pegs
Visualising correspondences: person $=$ peg, handshake $=$ rubber band
A triangular number as a dot pattern:



Care
Pack facing underside of metal base to protect pegs.

## Station

## Handshakes

Physical experience
Mental activities
Explicit content

Drawing
Visualising correspondences: person $=$ dot, handshake $=$ line
The triangular numbers as a sequence whose differences are the natural numbers


Interactivities
Go to http://nrich.maths.org/2883 .

Station
Physical experience
Mental activities
Explicit content

Fibonacci numbers
Moving a slide rule cursor
Adding pairs of numbers of increasing size
The Fibonacci numbers as a recursive sequence


## Station

## Possibilities for collaboration

We often observe that, when the child doing the sums gets stuck, the child behind the wedge will try to help, and to do so in a way that adult teachers would envy.


Interactivities
Go to www.magicmathworks.org, then 'Virtual Circus', 'Number Patterns', 'Fibonacci Patterns'.

## Station The feely box

Physical experience Feeling a polycube
Mental activities
(for 'B')
'opposite',
Visualising a three-dimensional spatial arrangement from a shape explored only by touch. Realising which prepositions -
'over', 'next to', ..., are spatially ambiguous. Improvising a coordinate system by which the location of the parts can be communicated.

Explicit content
There is no explicit content. The object of the exercise is simply to make the child aware that the task requires precise geometrical language.


Up to a dozen Multilink cubes, Polydron
'Framework' triangles as an alternative


Corresponding pieces the other side

## Possibilities for collaboration

If ' $C$ ' is not receiving unambiguous instructions, $s / h e$ should
complain
mean 'on and seek clarification: "When you say 'underneath', do you a lower level' or 'towards me'?"

## Station Left \& Right

Physical experience Matching an object and its reflection.

## Mental activities

body in space.
In the rope activity the children must remember which way they folded their arms the first time. This knowledge depends on proprioception, the awareness of the position of one's

The mental and physical activities are therefore inseparable.
Explicit content
Solids lacking a symmetry plane are chiral/non-superimposable. To turn a closed surface inside out (as happens with the cube here)

is to reverse its chirality.
Possibilities for collaboration

With three children, the two who are to make the knots can face each other as if in a mirror and be fed by the third.

## Station

Physical experience

Mental activities
child can
reduced
symmetry of the
curve, activity.
Explicit content

The sliding ladder
The child must move a stick in a right-angled frame, keeping the ends in contact with it.

Visualisation of the motion of the stick, concentrating on the position of the mid-point. Where an off-centre point is chosen, the assist this visualisation with a consideration of how the symmetry of the stick will dictate the reduced resulting figure.

The locus is counterintuive, perhaps because one imagines lines drawn along the stick, forming a parabola as an envelope which bends the other way. This is itself an instructive

Our apparatus represents one quadrant of the Trammel of


Archimedes.
Possibilities for collaboration
gentle


The pressure
dry-wipe pen stick of correct size to fit hole
second child can help by applying to the pen.

## Station

## Physical experience

the
Mental activities
the hole
numbers in

## Explicit content

products on the

## Tables race

The child must turn a tetrahedral block until its orientation is such that, when placed in a matching hole, it presents to the viewer correct number in the chosen 'times table'

The successful children realise that every block bears a number they need. Upon finding this number, they can place it straight in to which it belongs. The slower strategy is to seek the order.

Alternative factorisations mean that the same number may occur in several positions on the multiplication square. That the task is possible means that there are just $9 \times 4=36$ distinct
$9 \times 9$ multiplication square.


## Interactivities

Go to www.magicmathworks.org, then 'Virtuai Circus', 'Multiplication', 'Tables Race'.


## Station

The seesaw

The children place hangers on the pegs of a mathematical balance so that they achieve equilibrium.

The mathematical balance is a key piece of apparatus in experimental cognitive psychology because two attributes, the choice of a the choice of the number of hangers to place on it, can independently. The finding is that a certain attained before the child can bear the
peg and be varied mental maturity must be two in mind simultaneously.
Explicit content
'The law of the lever'.


## Interactivities

Go to www.magicmathworks.org, then 'Virtual Circus',
'Multiplication', 'The Seesaw'.


## Station Times chimes

Physical experience

Mental activities

A child rings a bell on each multiple of a chosen number as a count is made - and may attempt to do so with each hand independently.

Realising that numbers contribute to their common multiples: that, for example, the factors 3 and 4 occur in all multiples of 12 .

Observing that the numbers which sound alone are prime.

## Explicit content

same
A positive integer realised as a product of factors.
The musical score used also displays the following property geometrically (in the slanting lines joining squares of the colour)
If $q-p=1$, then $n q-n p=n$.


## Interactivities

Go to www.magicmathworks.org, then 'Virtual Circus', 'Multiplication', 'Times Chimes'.

## Possibilities for collaboration

This is by its nature a collaborative activity. For the younger, less experienced musicians, each child should ring a separate bell.
Older, more practiced musicians can try two bells each, one in each hand.

The bells are colour-coded on the musical score. It is only necessary to tap the bells to ring them.

Station
The rubber band enlarger

The child stretches a rubber band of double length from an anchor peg. With the mid-point $\mathrm{s} / \mathrm{he}$ tracks by eye the outline of a drawing.

Mental activities
to scale factors and pen point are

The pen at the end makes an enlarged copy.
Realising that, whatever the properties of the rubber, two bands will stretch twice as far as one, and that the result is therefore an enlargement by scale factor 2 . Extrapolating from this $3,4,5, \ldots$ or, imagining that the sighting point swapped, to fractional enlargements.

## Explicit content

If, from a given point, radiating lines of length $a, b, c, \ldots$ are drawn, multiplying their lengths by $k$ produces a figure enlarged by
that factor.


## Interactivities

Go to www.magicmathworks.org , then 'Virtual Circus',
'Transformations', 'Rubber Band Enlarger'.

## Station <br> Spirals

Physical experience
according to a rule which
Mental activities
consider why the curve turns out the way it does.

In each

Archimedean:
The child wraps a stick round a peg.
Equiangular:
The child moves a stick round a peg ensures the required property. case the child should

## Explicit content

Archimedean:
The radius is directly proportional to the angle through which the stick turns.

## Equiangular:

Each segment makes the same angle with the radius.
The Archimedean spiral:


The equiangular spiral:

$$
\text { dustê, dry-wip } \uparrow \text { pen } \uparrow
$$



## Station

## Physical experience

plane and
he has
proceeds.

## Mental activities

$\mathrm{s} / \mathrm{he}$ has
wider thought
their own
Explicit content
swap of top
additional
and
longer. The case of the plane mirror the case of the cylindrical

## Anamorphs

The child attempts to draw a letter in such a way that, upon reflection in a mirror, it appears correct. The mirrors are respectively cylindrical. Because $s /$ he watches the reflection form, immediate feedback and can correct errors as s/he

The child may extrapolate from the two instances here to the thought that different mirrors might produce other transformations. If used the Rubber band enlarger, s/he can entertain the that many different pieces of apparatus might produce transformations.

The geometrical optics predicts that, in a plane mirror, front and back are reversed. In the experimental set-up here, this means a and bottom. In the case of the cylindrical mirror, there is an transformation: parts of the drawing furthest from the mirror tangential to the curve must be drawn proportionally upshot is that a square grid can be used in the but must be swapped for a polar grid in one.

dustêr, dry-wipe

| Interactivities | Go to $\frac{\text { www.magicmathworks.org , then 'Virtual Circus', }}{\text { 'Transformations', 'Curved Mirror'. }}$ |
| :--- | :--- |
| Station | Mirror symmetry |

Physical experience

## Mental activities

Explicit content

Mirror symmetry
The child draws half a picture and watches the symmetrical half appear. In the kaleidoscope s/he observes how symmetry axes multiply as $\mathrm{s} / \mathrm{he}$ reduces the angle between the mirrors.

The realisation that a 2 -dimensional figure may possess more than one symmetry axis.

The geometrical optics of single reflections in a mirror and multiple reflections between mirror pairs.

## MIRROR SYMMETRY


angled support to ensure kaleidoscope mirror flaps are perpendicular to the board

## Station

Physical experience

Mental activities

Explicit content

## Rotation symmetry

By means of the actions described, the child completes drawings with rotation symmetry of orders 2 through 6 .

The realisation that a 2-dimensional figure can have rotation symmetry of any order, the limiting case being the circle.

If the order of rotation symmetry is $k$, the figure may be brought into coincidence with itself in $k$ positions.

$\uparrow$ dry-wipe pen, dustef

## Station Perspective drawing

Physical experience

Mental activities
of an

Explicit content

With an eye to the sight, the children trace the outline of some chosen object behind the Dürer screen.

Having got over their surprise that a mindless procedure has such an accurate result, the children can think about how the distance object from the screen affects its apparent size.

Projective geometry. How the picture plane cuts the pyramid of vision, with the consequence observed.


## Interactivities

Station

Go to www.magicmathworks.org, then 'Virtual Circus', 'Transformations', 'Perspective Drawing'.
The tower of Hanoi

## Physical experience

the moves are

## Mental activities

may be underlying pattern.

## Explicit content

The number of
function of the number of

A legal move is to take a box from the top of a pile and place it on a larger box or an empty one of the three sites. In fact, given the progress of the top box (clockwise or anticlockwise), forced.

The fractal structure referred to below may not be apprehended explicitly. Nevertheless, quite young children experts, suggesting implicit recognition of an

There is a fractal structure to the activity whereby the same sequence of moves is repeated on different scales.

$$
m=2^{b}-1
$$

moves, $m$, is an exponential
boxes, $b$, viz. .


## Station

Physical experience

## Mental activities

can only
aim should be older children
back of the

## 3-D Os \& Xs

A player places a ball in a hole with the object of completing a line of three.

In the 2-player game, by commanding the centre hole, the first player can force the situation that, on the fourth move, his opponent block one of two lines, ensuring victory on the next move. The important realisation for the game in general is that the to create as many potential lines as possible. For the
the task on the board focuses attention on the four
types of

## Explicit content

the
is clear, the and 4-player versions
site and the number of potential lines through each.
The essential geometry of the playing grid, which players are encouraged to master on the back of the main board, is that of cube itself. Though the strategy for the 2-player game varying allegiances possible complicate the 3-


## Station

Physical experience

## Mental activities

## Explicit content

the
situation.

Nim
A move consists in choosing a row and the number of matches to be removed from it.

The children must anticipate the result of their move, but, as indicated in the next box, it is equally important to think how they arrived at the current position.

The game can be analysed in terms of the binary numbers represented by the rows, but even sixth formers find the analysis difficult. The strategies suggested on the back of the main board encourage players to think backwards from a potentially winning


Number-building: the triangle family
The base grid forces a close packing of the balls, which the child follows in building and extending figurate expressions of the under investigation.

If the children have made the Handshakes investigation, they may recognise the triangular numbers. More hidden is the fact that these plus 1 comprise a centred hexagonal number.
realisation is that figurate numbers match an algebraic) pattern with a geometric one.

The following number types may be realised:

## Triangular

Square (= rhombic)

interrelations.

## NIM STRATEGIES

There is a winning move for the first player which we shall not reveal!' But there are 4 board positions you can turn into a win:

1. There are 3 rows left, 2 with equal numbers:
II
Remove the II
II
III 3 Now you can match
II row:
2. There are 3 rows left, 2 with a single match:

3. There are 2 unequal rows left:


Physical experience
pyramid on on the blue

Mental activities numbers show that two pyramid

## Explicit content

Again, there is a close packing but the orientation differs from that on the blue board so that, for example, the sloping face of a the red board corresponds to the base of a tetrahedron board.

Sequences $\mathbf{G}$ and $\mathbf{H}$ are the important patterns to think about. In the second case the children find that two consecutive triangular form a square. By suitable colouring they can also consecutive tetrahedral numbers make a

From the above remark we realise that the relations here are not new. However, some are clearer in the 'blue 'orientation of layers; some, in the 'red 'orientation.


At both the above stations this table occurs on the back:


This is the suggested for the combined


## Station

Physical experience

Mental activities

## Explicit content

decision
solution
of which that at

The Verden labyrinth
A legal move is to follow the arrow on the tile on which you land from a previous one.

Children struggling to find a solution should be encouraged to work backwards, a heuristic advocated for Nim above.

How many steps you take on a given move dictates the direction you have to take next. This is not quite like a maze, where, at a
point, one has the choice of two directions. In fact the follows a unique route, making this a labyrinth,

Cnossos is the original.



## Station

Safe queens

Physical experience
Placing the cones. In any line - vertical, horizontal or diagonal - there must be no more than one queen.

## Mental activities

puzzle: every there would above.

Explicit content

Along with that explicit rule, there is an implicit one, a condition the children may not realise but helps in the solution of the row and every column must contain a queen, otherwise be one with more than one queen, breaking the rule

The back of the main board encourages the children to think in terms of periodic arrays - even though, in the case of the 8 queens, may need to violate a pattern.


## SAFE QUEENS

- The blue cones are chess queens.
- No queen must threaten another.
- That means there must never be two queens
$\ldots$ in a row:.. a column: ... or on a diagonal:

- Begin with 4 queens on a $4 \times 4$ board.
- Enlarge the board to $5 \times 5$ :


Add a fth queen.

Make the board $6 \times 6,7 \times 7,8 \times 8$ and add a th, a 7 th, an 8 th queen.
(Help on the back $>$ )

## Solutions with ROTATION SYMMETRY

## Order 2 (half-turn) or Order 4

- Draw a dot at the rotation centre of the $4 \times 4$ square on Grid A. Instead of the $5 \times 5$ square already there, draw one which puts a queen at the centre and give her a dot.
- We've made Grid B by stretching Grid A sideways. This gives us a $6 \times 6$ solution-give it a dot - and a $7 \times 7$ solution. But draw a $7 \times 7$ square which puts a queen at the centre and give her a dot.
- Grid C is a piece of Grid A with queens removed. Draw the 4 dots on the right in their new positions and box them in an $8 \times 8$ square to give a solution with the centre shown.

Grid B

|  |  | $\bullet$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - |  |  |  |  | - |
|  |  | - |  |  |  |
|  |  |  |  |  | - |
|  | - |  | - |  |  |
|  |  |  |  | - |  |
|  |  | - |  |  |  |

Grid A


Grid C


Physical experience
empty
Mental activities
the

Explicit content
predict the next $n$

There are just two valid moves: a slide onto an adjacent empty stripe, and a jump over a single frog of the other colour on to an stripe.

When the children are failing to find the optimal strategy, they should be encouraged at each decision point to make the move which maintains an alternating colour pattern. This permits 'leapfrogging 'of the title.

The optimal strategy produces the following number, $n$, of moves when there are $f$ frogs each side: $n=f(f+2)$,
though it is rare even for older students to arrive at this or an equivalent expression without being steered. However, by tabulating differences, as in the table, they can values.

strip of vinyl, which
rolls up for storage

## LEAPFROG

The red and yellow frogs must swap places on the zebra crossing.

- A frog can slide on to an empty stripe or jump over a frog of the opposite colour.
- How many moves does it take if you start with 1 frog each side? 2 frogs? 3 frogs? ... ?


## Station Over the phone

Physical experience Arranging polygonal tiles.

## Mental activities

how
This is a sister station to The feely box. The challenge is to put yourself in the position of the other child and thereby realise precise you have to be in your description.

Explicit content
As with The feely box, there is no explicit mathematical content.


Station
9 hexagons to 1
Physical experience
Arranging polygonal tiles in an outline.

Mental activities
Mirror
younger children will be able themselves and others - how

Though there is no instruction board, no compulsion, the older children will strive to make a pattern with symmetry. (See symmetry, Rotation symmetry). And the to construct a narrative, describing - to they made their pattern.

Explicit content

A dissection puzzle like this is predicated on the conservation of area.
There are orders of magnitude in the dissection, which govern the possibe patterns:

2 triangles $=1$ rhombus,
3 rhombuses $=1$ hexagon.


## 3-D Os \& Xs:

THE BASIC STRATEGY
An opponent can only block one fine at at time. Therefore the hole you choose must command as many lines as it can. How many lines can a hole command?

By symmetry, the holes ate of just 4 kinds:
The middle of The centre of A corner The centre un edge a face


The number of lines passing through each kind of hole

$$
4(5) \quad\left(\frac{5}{2}\right)
$$

