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5.4 Dual polygons and tilings 

 
An analogy takes the form                    A duality takes the more specific form 

 

 A is to B in X as A’ is to B’ in X’.         A is to B in X as B is to A in X’. 

 

In projective geometry duality is fundamental and can be given a formal definition, that is to 

say, one for which we can use a sentence as a template:  

 

If points A, B, C, ... lie on line k, lines a, b, c, ... pass through point K.  

 

Collinearity of points corresponds to coincidence of lines. In Euclidean geometry we must 

specify the correspondence. 

 

If one polygon is the dual of another, a vertex in one corresponds to a side in the other 

so that the size of an angle in one corresponds to the length of a side in the other. 

 

If we have a cyclic polygon, we can create a tangential polygon like this. 

  
 

All isosceles trapezia are cyclic; all kites are tangential. We can obtain the second as a dual 

of the first as shown in A. As shown in red, the isosceles trapezium has two equal sides; the 

kite has two equal angles. 

 

Each is the dual of the other. 

 

In this section we shall look at specific pairs of dual 

quadrilaterals obtained in this way. 
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Since radii are equal and tangents from a point are equal, the blue figures in A are kites. 

In B we have taken an isosceles trapezium which is also tangential . (It is therefore 

bicentric.) The red angles have become right angles with the result that the kite is also 

bicentric; the blue figures have become rectangles. We can see this by considering the similar 

green and lilac kites in the enlarged figure. Show that the blue lines are perpendicular.  

 

In the bicentric trapezium 𝑏 =
𝑎+𝑐

2
. Why? That is, b is the arithmetic mean of a and c.  

Comparing corresponding sides in the similar kites, 
𝑎/2

𝑟
=

𝑟

𝑏/2
, so that 

𝑎𝑏

4
= 𝑟2 =

ℎ2

4
, 

ℎ = √𝑎𝑏 . That is, h is the geometric mean of a and b. Does the 90° kite have a special 

property? It does. 
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C   Returning to A, we now make the top and bottom sides of the trapezium equal. It has 

become a rectangle; the kite has become a rhombus. To the four equal sides of the first, there 

correspond the four equal angles in the second. The blue figure is a kite. 

 

D  A tangential rectangle is a square; a cyclic rhombus is a square. The blue figure is a 

square. 

 

 
 

Here is a little more on bicentric quadrilaterals (type CT in the notation of section 4.1). 

 

 

 

Three similar right triangles are shown. 

We choose two and compare 

corresponding sides. 

 
𝑒−𝜌

𝜌
=

𝑒

𝑓
.  

 

Do the algebra to show that 

 

2𝜌 =
2𝑒𝑓

𝑒+𝑓
 . 

 

That is to say, the diameter of the 

incircle is the harmonic mean of e and 

f. 
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We found a geometric mean in the bicentric trapezium. In fact we can construct a second by 

use of Ptolemy’s theorem. (We can construct this second one in any isosceles trapezium, not 

just a tangential one.) This relates the lengths of the diagonals and sides of a cyclic 

quadrilateral: 𝑎𝑐 + 𝑏𝑑 = 𝑒𝑓. We shall not prove it here, though it can be proved by use of 

similar triangles. 

 

 
 

In the section 4.2: From Heron to von Staudt we 

learn that the area A of a cyclic quadrilateral is 

given by 𝐴 = √(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑), 

where 𝑠 =
𝑎+𝑏+𝑐+𝑑

2
.  

 

As we find in the section there too, 

adding up the p, q, r, s segments, we see that, for a 

tangential quadrilateral, 𝑎 + 𝑐 = 𝑏 + 𝑑. 

 

Use this fact to show that the area A of a bicentric 

quadrilateral = √𝑎𝑏𝑐𝑑. 

 

In the isosceles trapezium below, the top 

right vertex is a centre of the dotted 

black circle, which also passes through 

the vertex bottom right.  

Ptolemy’s theorem gives 𝑎𝑐 = 𝑒2 − 𝑏2. 

Note the form is that of Pythagoras’ 

theorem. We construct the blue circle on 

a diagonal as diameter. The black dotted 

circle allows us to transfer the length b 

to the blue circle. Since the angle in a 

semicircle is a right angle, we have a 

right triangle and the red length is √𝑎𝑐. 

(As you can see, we could draw another 

such segment to the second crossing 

point of the black and blue circles.) 



 5 

 
 

 

 

The black pentagon below is known as the Cairo tile. The name already suggests that it 

tessellates, which indeed it does. We shall come to this shortly. It has many nice numerical 

properties. We have listed some, which you may like to confirm. The green figure is the dual. 
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The Cairo tile comprises:        Its dual comprises: 

2 equal squares,             2 equal ½-squares, 

3 congruent right kites.                                                   3 equal equilateral triangles. 

 

(The dotted line shows that it may also be dissected 

Into 2 equal half-squares and a sector of a regular 

12-gon.) 

 

4 sides of one length (1 for comparison),                        4 angles of one size (105°), 

1 of another (√3 - 1)                                                        1 of another (120°) 

 

3 angles of one size (120°),                                             3 sides of one length (
 √3

2
(√3 − 1)), 

2 of another (90°)                                                            2 of another (
√6

2
(√3 − 1)) 

(With the side length 1 as allocated, the area 

is rational, namely 3/2.) 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Cairo tiles are shown in red.  

The figure shows how 4 make up 

an irregular hexagon which tiles 

the plane, therefore so do the 

constituent pentagons. 

 

The figure also shows that the 

vertices of the Cairo tiles fall on 

the incentres of the triangles and 

squares which compose the 

semiregular tiling 3.3.4.3.4. 

Correspondingly, the vertices of 

the triangles and squares fall on the 

incentres of the Cairo tiles. This 

reciprocal property defines a dual 

tiling. 

 

Below we have a tiling which 

comprises regular 12-gons and 

Cairo duals. 
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Another dual relation concerns quadrilaterals and the parallelograms formed by joining their 

side midpoints (Varignon parallelograms).  The attributes ‘orthodiagonal’ and ‘equidiagonal’ 

are interchanged. 

 

  Quadrilateral:     Varignon parallelogram: 

 

  Equidiagonal (a rectangle)   Orthodiagonal (a rhombus) 

  Orthodiagonal (a rhombus)   Equidiagonal (a rectangle)  


