5.2.9 Dissections of the regular dodecagon

Dissecting the regular 12-gon in different ways reveals interesting area relations involving the 12 -gon and the square.
(1) Here are three dissections of a regular 12-gon into four squares. They each demonstrate the fact that a regular 12-gon of unit radius has an area of exactly 3 .
A

B

Liu Hui, C3

Roger B. Nelsen, C20-21
9 pieces,
3 shapes
12 pieces, 3 shapes (all triangles)

József Kürschák, C19-20
(2) If we inscribe 3 of the $\mathbf{C} 12$-gons in squares, we can use the peripheral pieces to make one complete 12 -gon, thus producing a dissection of 3 squares into 4 12-gons:

(3) The biggest possible square in a 12 -gon has an area $2 / 3$ that of the 12 -gon. We can use that fact to produce a dissection of 212 -gons into 3 squares:

Conversely, the dissection establishes the area fraction:
The trapezium inside the square is the trapezium outside the square flipped about a side. Count the right triangles and rhombuses inside the square and compare with the totals outside. You should get a ratio of $2: 1$. (Rotation symmetry only requires you to compare a quarter of the figure inside and a single trapezium outside.)
(4) In \mathbf{D} we again inscribe a 12 -gon in a square so that its vertices coincide with midpoints of square sides, as in (2), but then inscribe the square in a second 12 -gon as in (3):

We know that the inner 12 -gon has an area $3 / 4$ that of the square, and the square has an area $2 / 3$ that of the outer 12-gon. Therefore the inner 12-gon has an area $\frac{3}{4} \times \frac{2}{3}=\frac{1}{2}$ that of the outer one. By the commutative law of algebra we obtain the same result if we interchange the shapes as in \mathbf{E}. There it is clear by dissection into right isosceles triangles that the inner square has half the area of the outer one.

A different dissection also yields this result. We dissect \mathbf{D} as in \mathbf{F}. If each right isosceles triangle in the border has area b, a square has area $2 b$. This gives a total of $12(a+b)$ for both the border and the centre as required.

