5.2.3 Other relations between the diagonals of a regular polygon

The red cyclic quadrilateral is the one we have already used. Applying Ptolemy's theorem in the blue one, a regular trapezium, gives:
$d_{0}{ }^{2}+d_{k} d_{k+2}=d_{k+1}{ }^{2}$. Again setting $d_{0}=1$,
$1+d_{k} d_{k+2}=d_{k+1}{ }^{2}$, or:
$\left(d_{k+1}+1\right)\left(d_{k+1}-1\right)=d_{k} d_{k+2}$.

Notice as in $\mathbf{5 . 2}$.2 the implied identity:
$(\sin (k+2) \varphi)^{2}-(\sin \varphi)^{2}$
$=\sin (k+1) \varphi \cdot \sin (k+3) \varphi$
for $k \in Z$.

