5.2.2 Three consecutive diagonals

Consider a regular n-gon of unit side. Label the lengths of the consecutive diagonals from a given vertex, starting from a side of length $d_{0}=1, d_{1}, d_{2}, d_{3}, \ldots, d_{k}, \ldots, 0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$. Show that $d_{1} d_{k+1}=d_{k}+d_{k+2}$.

We suggest a number of approaches.

$1^{\text {st }}$ proof

\boldsymbol{A} We see that the theorem follows immediately from Ptolemy's theorem for cyclic quadrilaterals.

A

$2^{\text {nd }}$ proof

Lemma: As a consequence of the 'same segment' theorem, equal segments of a circle subtend equal angles at the same apex. Thus consecutive diagonals from a given vertex of a regular n-gon are separated by an angle $\frac{\pi}{n}$.

B The lengths of the diagonals are labelled and the angles are shown in multiples of π / n. The diagonals divide the polygon into triangular regions. \boldsymbol{C} shows how rotating a region about a vertex completes an isosceles triangle with an adjacent region similar to that defined by the shortest diagonal. Equating ratios of the longest to a shorter side gives:
$\frac{d_{1}}{1}=\frac{d_{3}+d_{1}}{d_{2}}=\frac{d_{4}+d_{2}}{d_{3}}=\frac{d_{5}+d_{3}}{d_{4}}=\ldots=\frac{d_{k+2}+d_{k}}{d_{k+1}}$, whence: $d_{1} d_{k+1}=d_{k}+d_{k+2}$ as required. B

C

$3^{\text {rd }}$ proof

From the figure below we have by direct substitution:
LHS $=d_{1} d_{k+1}=\frac{\sin \left(\frac{2 \pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)} \times \frac{\sin \left[\frac{(k+2) \pi}{n}\right]}{\sin \left(\frac{\pi}{n}\right)}=\frac{2 \sin \left[\frac{(k+2) \pi}{n}\right] \cos \left(\frac{\pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)}$.
RHS $=d_{k}+d_{k+2}=\frac{\sin \left[\frac{(k+1) \pi}{n}\right]+\sin \left[\frac{(k+3) \pi}{n}\right]}{\sin \left(\frac{\pi}{n}\right)}=\frac{2 \sin \left[\frac{(k+2) \pi}{n}\right] \cos \left(\frac{\pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)}=$ LHS as required.
It is interesting to note the implied identity, which is valid for all $k \in \mathrm{Z}$ but where $(k+2) \varphi$ is not a multiple of π :

$$
\cos \varphi=\frac{\sin [(k+1) \varphi]+\sin [(k+3) \varphi]}{2 \sin [(k+2) \varphi]} .
$$

