(Regular polygons are both cyclic and tangential.)

5.2.1 Triangles among the diagonals

Triangles like those picked out by thick lines in the figure are made by joining three diagonals of a regular *n*-gon, or segments of them defined by diagonal intersections. Show that in such a triangle, unless all three sides are equal, no more than two of the sides can stand in integer ratio.

We situate the polygon in its circumcircle.

Lemma A: As a consequence of the 'same segment' theorem, equal segments of a circle subtend equal angles at the same apex. Thus consecutive diagonals from a given vertex of a regular *n*-gon are separated by an angle $\frac{\pi}{n}$.

Lemma B: From **Lemma A** the angle between any two diagonals from the same vertex is a multiple of $\frac{\pi}{n}$. The whole set of diagonals can be generated by rotation about the centre, in a chosen sense, of the set of diagonals from a single vertex by consecutive multiples of $\frac{2\pi}{n}$. As a result, the p^{th} diagonal from vertex *l* cuts the q^{th} diagonal from vertex *m* at an angle of $\frac{2(m-l)\pi}{n} + \frac{(q-p)\pi}{n}$, an integer multiple of $\frac{\pi}{n}$. In a triangle whose vertices are those of the regular *n*-gon, all angles between diagonals are therefore integer multiples of the same unit, and thus stand in integer ratio.

Lemma C = Niven's theorem: For angles in integer ratio, there are just two values of sine giving an integer ratio.

Proof of the general case:

By **Lemma B** the angles of our triangle stand in integer ratio. Let our triangle have side lengths *a*, *b*, *c*, opposite angles in integer ratio α , β , γ . By the sine rule we have: $\frac{a}{b} = \frac{\sin \alpha}{\sin \beta}, \frac{b}{c} = \frac{\sin \beta}{\sin \gamma}, \frac{c}{a} = \frac{\sin \gamma}{\sin \alpha}$. By **Lemma C** only one of the three ratios can be integral. The required result follows.

Proof in the restricted case of *complete* diagonals:

By Lemma B the angles of our triangle stand in integer ratio.

From the figure we have: $d_k = \frac{\sin\left[\frac{(k+1)\pi}{n}\right]}{\sin\left(\frac{\pi}{n}\right)}$.

Thus each side of our triangle corresponds to a different ratio of sines. By **Lemma C** only one can be integral. The required result follows.