
4.4 From Finsler-Hadwiger to van Aubel 

 
4.4.1: Finsler-Hadwiger 
 

The Finsler-Hadwiger theorem concerns a pair of squares hinged at a vertex. van Aubel’s 

theorem concerns a chain of four squares hinged so as to enclose a quadrilateral. We shall use 

the same figure to show both. 

 

 We have chosen a diagonal of the central quadrilateral and marked the midpoint. The solid 

lines join the square centres to the midpoints of sides. In each colour the solid and dotted 

lines are equal and perpendicular. Why? The quadrilateral formed from the dotted lines is a 

parallelogram. Why?  

 

One triangle has sides: red - dotted blue - green. 

Another has sides: dotted red - blue - green. 

 

                                  
 

 

The angles between  

   the red and dotted blue sides  

must be equal to the angle between  

   the blue and dotted red sides.  

Why?  

 

Therefore the two triangles are congruent side-angle-side. 

 

Since the corresponding red sides, and the corresponding blue sides, are equal and 

perpendicular, so are the green sides. 

 



    
4.4.2: van Aubel 
 

We now use what we have found about the green lines to prove van Aubel’s theorem. 

 

 
4.4.3 Corollaries 

 

van Aubel’s quadrilateral 𝐶1𝐶2𝐶3𝐶4 is   

both orthodiagonal and equidiagonal. Join  

the side midpoints of any quadrilateral and  

you get a parallelogram. In the case of the  

van Aubel quadrilateral the result is a square. 

 

 

 

 

 

That the green lines are equal and 

perpendicular is all we need to prove the 

Finsler-Hadwiger theorem because, as the 

left hand figure shows, we could equally 

well have chosen the midpoint of the upper 

dotted line and arrived at the same result.  

 

The green quadrilateral is therefore a 

square. This is the Finsler-Hadwiger 

theorem. 

 

Triangles 𝐶1𝑂𝐶3 and 𝐶2𝑂𝐶4 

Each have a pair of green and 

lilac sides, but they are 

perpendicular. So, just as 

before, we have a pair of equal 

angles between equal, 

perpendicular sides and the 

triangles are congruent and 

mutually rotated by a right 

angle.  

 

The black sides are therefore 

equal and perpendicular. This is 

van Aubel’s theorem. 

 



Returning to our Finsler-Hadwiger diagram, we can find more squares in it. 

 

 
 

Indeed we still have the van Aubel figure. The blue and green squares are still built on the 

four sides of a quadrilateral, the thin one with two adjacent blue sides and two adjacent green 

sides. Follow clockwise, starting at the top. We have a green square on a green side, then a 

blue square on a blue side, then again a blue square on a blue side, but turned over, and lastly 

a green square on a green side, but turned over. 

 

4.4 Finsler-Hadwiger and Brahmagupta 

 
In section 4.3: Orthodiagonal quadrilaterals, subsection Further properties of a CO, we 

meet what we may call the Brahmagupta property from the theorem illustrated there (A). The 

same dual property holds in the Finsler-Hadwiger figure (B). In each we have a pair of 

triangles sharing a vertex from which the altitude to one is a median of the other. 

 

  

                         
 

 

Begin with the hinged pair of green 

squares. By the Finsler-Hadwiger 

construction we produce the black square. 

 

Begin instead with the hinged pair of blue 

squares. By the Finsler-Hadwiger 

construction we again produce the black 

square. 

 

The green pair and the blue pair are thus 

complementary. 

 

Comparing the black dotted figure with the 

thin blue figure above, we see that the black 

dotted figure is an equidiagonal, 

orthodiagonal quadrilateral. 



A  In 4.3, subsection Further properties of a CO we establish the relationship by identifying 

equal angles and thence isosceles triangles.  

 

B  Here we take the upper square and the attached triangle on the right and rotate the figure 

clockwise by a right angle. The solid line segments map to dashed segments of the same  

colour 

 

 
 

 

We could equally well take the lower square and the attached triangle to the left, and argue in 

the same way to show the dual relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By this transformation: 

1.)  If we extend the dashed green line up 

and to the right, it meets the solid green 

line at right angles. 

2.)  The dashed orange segment is equal 

and parallel to the solid black segment. 

The dashed green line is therefore one 

diagonal of a parallelogram and bisects 

the other. So half the dashed green 

segment is a median of the triangle 

containing it. 

The same line, extended as necessary, is 

thus both an altitude of the right hand 

triangle and a median of the left hand 

one. 

 


