4.3.7 Further properties of a $C O$

A

A We trace a line from the foot of an altitude (F) through the intersection of the diagonals (I) to a point on the opposite side (G). Tracking the complementary angles θ and φ, we see that we have two isosceles triangles whose equal sides are radii of the red circle, centre G. This is Brahmagupta's theorem.
\boldsymbol{B} displays the relationships arising. We have labelled circles by their centres. What we have observed in \boldsymbol{A} is the dual relation indicted by the lines $F_{P Q} I C_{R S}$ and $F_{R S} I C_{P Q}$, and the corresponding relation concerning the other pair of opposite sides $P S$ and $Q R$. Because they have vertically opposite angles, the right triangles $I F_{R S} C_{R S}$ and $I F_{P Q} C_{P Q}$ are similar. And the same applies therefore to the corresponding pair in the other quadrants.

The 4 blue circles have $I P$, etc. as diameters. They necessarily meet in pairs in the feet of the altitudes, $F_{P Q}$, etc. and all meet in I, where one pair share $P R$ as tangent, the other pair, $Q S$. The 4 red circles have the sides, $P Q$, etc. as diameters and therefore meet in pairs in the vertices, P, etc., and all pass through I.

B

