
4.2 From Heron to von Staudt 

 
Mathematics advances by showing that, at each stage, a result is a special case of a more 

general one. We illustrate this process for the area formula for a quadrilateral.   

 

 
 

A  C19, Bretschneider & von Staudt: √(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑) − 𝑎𝑏𝑐𝑑 (𝑐𝑜𝑠
𝜃+𝜑

2
)

2
 

B  C7, Brahmagupta:                           √(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑) 

C  C1, Heron:                                      √(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)𝑠 

 

s is the semi-perimeter. 

 

Because the labelling of the sides is arbitrary, algebraic symmetry must be preserved in these 

formulas.  

 

A  It appears to be violated in the first but that is because we could equally have chosen to 

label the other pair of angles. The reason we must specify angles is that, otherwise, the 

quadrilateral would not be rigid: think of it as a linkage we can bend around. (Only the 

triangle is a rigid polygon.) And, if it is not rigid, it does not have a specified area. 

B  Because of the supplementary angles in a cyclic quadrilateral, the red term contains 

𝑐𝑜𝑠
𝜋

2
= 0 and vanishes. 

C  All triangles are cyclic. All we have done here is to say that a triangle is a cyclic 

quadrilateral where one side has zero length. 

 

Test the formulas on some special polygons. For example, try A on a parallelogram, B on a 

regular trapezium and a rectangle, C on a right triangle and an isosceles triangle. Do you 

obtain more familiar expressions? You have to work a bit at the regular trapezium: you 

should find you get a difference of two squares inside the bracket which enables you to use 

Pythagoras in the red triangle: 

 



                                                  
 

The isosceles triangle is two red triangles back-to-back. 

 

On seeing Heron’s formula, the first question students ask is, “Why does it talk about the 

semi-perimeter, s ?” It arises from this geometry: 

 

 
The perimeter comprises two each of the coloured lengths, the semi-perimeter s comprises 

one each therefore. The red length, for example, is then equal to s - a.  

 

The all-important dimension in the figure is r, the radius of the incircle.  

The triangle comprises the three dotted triangles, total area 

 𝑨 = 
𝑎𝑟

2
+

𝑏𝑟

2
+

𝑐𝑟

2
= 𝑟

(𝑎+𝑏+𝑐)

2
= 𝒓𝒔. [Equation 1] 

It also comprises three pairs of triangles like the grey one, total area 

𝐴 = 𝑟[(𝑠 − 𝑎) + (𝑠 − 𝑏) + (𝑠 − 𝑐)].  

In the grey triangle, (𝑠 − 𝑎) = 𝑟𝑐𝑜𝑡 (
𝛼

2
). Substituting the three expressions like this, we have: 

𝐴 = 𝑟2 [𝑐𝑜𝑡 (
𝛼

2
) + 𝑐𝑜𝑡 (

𝛽

2
) + 𝑐𝑜𝑡 (

𝛾

2
)]. 

Since 
𝛼

2
+

𝛽

2
+

𝛾

2
=

𝜋

2
, we can use the special relation that the sum of the cotangents equals 

their product, so that 

𝐴 = 𝑟2𝑐𝑜𝑡 (
𝛼

2
) 𝑐𝑜𝑡 (

𝛽

2
) 𝑐𝑜𝑡 (

𝛾

2
) . Changing the subject of the grey triangle formula, 

 𝑐𝑜𝑡 (
𝛼

2
) =

𝑠−𝑎

𝑟
, etc., so that, after cancelling, 



𝑨 =  
(𝒔−𝒂)(𝒔−𝒃)(𝒔−𝒄)

𝒓
 . [Equation 2]. 

Multiplying [Equation 1] by [Equation 2], we get 

𝐴2 = 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) . 

And finally, taking the square root of each side, we obtain the Heron formula, 

𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐). 

Label the red length x, the blue length y, the green length z and rewrite a in terms of x, y and 

z. 

 

Visit the Wikipedia entry ‘Heron’s formula’. See if you prefer one of the other derivations 

given there. 

 

From this figure we can derive an alternative expression for the area of a triangle. 

 

 
 

So the area of triangle C can also be written 
𝟏

𝟐
𝒂𝒃𝒔𝒊𝒏𝜽. I’ve split A and B into triangle pairs. 

Write down corresponding expressions for the areas of A and B. Check the new formulas 

against the same special polygons you tried before. 

 

If we know the lengths of the diagonals, p, q, mutually inclined at the angle 𝜃, we have a 

simple equation for the area of quadrilateral A: 
𝟏

𝟐
𝒑𝒒 𝒔𝒊𝒏𝜽. To see why this is so, we label the 

four segments into which the diagonals are divided and apply our triangle formula to each 

region into which they divide the quadrilateral. 

 

 
 

 

 The important thing about [Equation 1] is that it applies to any polygon with an incircle 

(any tangential polygon). All regular trapezia are cyclic. Here is a regular trapezium which is 

also tangential (being both, we say it is bicentric): 

 

Area = ‘ half height times base’ 

         = 
1

2
ℎ𝑐 =

1

2
. 𝑏 sin(𝛼). 𝑐 =

𝟏

𝟐
𝒃𝒄 𝐬𝐢𝐧 (𝜶). 

                                                   

And we can write corresponding expressions for 

the other sides and angles. 

 

Area = 
1

2
sin 𝜃 (𝑝1𝑞1 + 𝑞1𝑝2 + 𝑝2𝑞2 + 𝑞2𝑝1). 

Simplify to confirm the formula.  



                                               

We see that b=
𝑎+𝑐

2
 , the arithmetic mean of a and c. 

 

Comparing corresponding sides in the two similar kites, the red and the blue, we have  
𝑎/2

𝑟
=

𝑟

𝑐/2
, so 

𝑎/2

ℎ/2
 =

ℎ/2

𝑐/2
 and 

ℎ = √𝑎𝑐 , the geometric mean of a and c. 

 

Since b > h unless 𝑎 = 𝑏 = 𝑐, the arithmetic mean for two unequal quantities exceeds their 

geometric mean. 

 

From the formula for the area of a triangle 
1

2
𝑎𝑏 sin 𝜃 we can derive the formula for the area 

of a circle. The triangle shown below has area 
1

2
𝑟2𝑠𝑖𝑛 (

2𝜋

𝑛
). n of these gives us the area of a 

regular n-gon, 
1

2
𝑛𝑟2𝑠𝑖𝑛 (

2𝜋

𝑛
). As n tends to infinity, and the polygon approximates a circle, 

the sine of an angle approaches the measure of the angle itself in radians.   

 

 
1

2
𝑛𝑟2𝑠𝑖𝑛 (

2𝜋

𝑛
) →

2𝜋𝑛𝑟2

2𝑛
= 𝜋𝑟2 is therefore the area of a circle radius r. 

 

                                                    
 

 

 

 

 


