
 

4.1 The circle and its quadrilaterals  

 
This is about quadrilaterals associated with the circle. Our quadrilaterals will be simple (not 

self-intersecting) and convex (containing both diagonals). What we shall find is that, however 

asymmetric the quadrilateral, the symmetry of the circle will assert itself in giving the 

associated quadrilateral a special property. 

 

Any quadrilateral may be drawn so that either two vertices lie on the circle and the other two 

lie on a tangent to it, or one vertex lies on the circle and the other three lie on tangents to it: 

 

 
 

These will be of interest to us in subsection 5.2.8. But here we shall be concerned with 

quadrilaterals whose four vertices lie on the circle - cyclic quadrilaterals -  or whose four 

sides are tangent to it - tangential quadrilaterals: 

 



 
 

We begin with a circle. The number of symmetry axes is infinite. Every line through the 

centre is a symmetry axis. We add points progressively. How can we add them so as to 

preserve a symmetry axis for the whole figure? 

 

 
 

1: The circle itself.        2: Adding any          3: Adding any         4: A third point would upset            

                                      single point              second point            symmetry so we must add  

                                      preserves                  preserves                 two. There are two ways 

                                      symmetry.                symmetry.               to do this (4A and 4B). 

 

2: The single point may lie anywhere.  

Here the symmetrical picture has been  

completed by adding two equal tangents. 

They meet the radii at right angles,  

forming a tangent or right kite, so called. 

The kite in 4A is of this type. We have 

 



added the dotted circle for comparison. 

If we remove the kite, we see that any  

pair of circles has a symmetry axis.  

 

4A: The quadrilateral is a kite. The diagonals are perpendicular (it is orthodiagonal). The 

angle between the sides of different length is a right angle (Thales’ theorem). Since all kites 

are tangential, this special one is both cyclic and tangential (bicentric). It is the only 

quadrilateral apart from the square, (a special case), which is both bicentric and 

orthodiagonal. 

 

4B: The quadrilateral is an isosceles trapezium. The parallel sides are chords bisected 

perpendicularly by the symmetry axis. The other pair are of equal length and subtend the 

same angle at the circumcentre. 

 

Say we are told that a cyclic quadrilateral has diagonals of equal length. These are equal 

chords of a circle. By the rotation symmetry of the circle, the resulting figure must have a 

symmetry axis. (In 4B imagine joining the top left point to the bottom right and the bottom 

left to the top right.) In other words the quadrilateral is an isosceles trapezium. 

 

To construct an equilateral triangle, we draw two equal circles so that one passes through the 

centre of the other. 

                                            
The three segments in bold are radii of equal circles, therefore equal themselves. 

 

That little sequence offers a taste of how persistent the circle’s symmetry is. We can derive 

most of the geometry of the circle from the fact that the radii are equal so that we 

immediately have isosceles triangles like those implicit in figures 3 and 4 above. Use A and B 

to find out some.  

 



 
 

A  What is 𝜃1 + 𝜃2 + 𝜃3?                                          B  What is 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4? 

     Write 𝜃1 in terms of 𝜃2, 𝜃3.                                        𝜑𝐴 = 𝜃1 + 𝜃2.                                       

     Write 𝜑1 in terms of 𝜃1.                                             𝜑𝐶 = 𝜃3 + 𝜃4. 

     Write 𝜑1 in terms of 𝜃2, 𝜃3.                                       Write 𝜑𝐶 in terms of 𝜑𝐴. 

You should find that, subtended by a given            You should find that opposite angles 

chord, the angle at the centre is twice the              are supplementary. 

angle at the circumference.                                   

 

If you kept one of the A chords fixed and moved the opposite vertex around, the same 

relation would pertain. What do you conclude from this? (the ‘same segment’ theorem). 

 

Following straight on from that, we can identify two pairs of equal angles in the figure, 

below, thence two similar triangles, two equal ratios, and two equal products, the 

‘intersecting chord theorem’. 

 

 
 

Here is an exercise on the intersecting chord theorem. You may like to try it before reading 

on. Show that the two turquoise lengths in the left hand figure are equal. 

 



 
 

 

In the middle figure we have: 𝑒𝑓 = (𝑅 + 𝑑)(𝑅 − 𝑑) = 𝑅2 − 𝑑2 = 𝑥2. And in the right hand 

figure we have the same product. Note that x is the geometric mean of e and f. 

Returning to figure B, what happens to the sum 𝜃2 + 𝜃3 when 𝜃1 = 0. Express the relation in 

words (Thales’ theorem). 

 

 

We need one more theorem. Show that the  

blue angles are equal (the ‘alternate segment’  

theorem, in distinction to the same segment  

theorem stated above). 

 

 

 

 

 

 

 

 

 

 

Much of Euclidean geometry consists in spotting similar triangles. Once identified, these can 

be compared most easily by setting them in the same orientation, as we did above in 

establishing the intersecting chord theorem. We can use similar triangles to prove a result 

involving secants and tangents. 

 

 



 
 

Here is a theorem which is surprising because a special result emerges from a general 

construction. It is an instance of a global property not apparent when we examine a figure 

locally. We start with any convex quadrilateral and bisect the angles. The points where they 

cut in pairs are vertices of a new quadrilateral. Label angles and discover the theorem. 

 

B reveals the similar 

triangles implicit in 

A. Comparing 

corresponding sides, 

we have: 

 
𝑎

𝑡
=

𝑡

𝑏
  ⇔ 𝑎𝑏 = 𝑡2. 

 

In C we have added 

a second secant. 

We now have: 

𝑎𝑏 = 𝑡2 = 𝑐𝑑 ⟹
𝑎𝑏 = 𝑐𝑑. 

 

In D we show the 

equal angles which 

arise from the cyclic 

quadrilateral. Use 

the figure to show in 

a different way that 

𝑎𝑏 = 𝑐𝑑. 

 



 
 

The following table contains the types of quadrilateral we are concerned with. We can use the 

code letters to refer to them. For example, instead of ‘a bicentric quadrilateral’ we can write 

simply ‘a CT’. 

 



 
 

 

 

We need to complete this section by establishing some quantitative properties of these 

quadrilaterals. 

 

First C, T and CO. 

 

                    C                                              T                                                 CO 

 

 
Opposite vertical angles              Opposite sides have the same             Opposite central angles  

have the same sum (𝜋).               sum (s, the semi-perimeter).              have the same sum (𝜋). 

                                                              

This was case B above.               This is a consequence of                        This we explain 

         tangents from a point being                   below. 

                                                     equal. Show it.   

  

 



 

 

    
In the section Theorems and their converses we find that, not only are the above 

theorems true, but also their converses.  

 

Now O and TO. 

 

O 

 
TO 

 

 

We already know that, for T, 

𝑎 + 𝑐 = 𝑏 + 𝑑, [Equation 1] 

⟹ (𝑎 + 𝑐)2 = (𝑏 + 𝑑)2,  
⟺ (𝑎2 + 𝑐2) + 2𝑎𝑐 = (𝑏2 + 𝑑2) + 2𝑏𝑑 . 

But we now know that for O, 

𝑎2 + 𝑐2 = 𝑏2 + 𝑑2. 

Therefore, for TO, 

 ac =  𝑏𝑑.         [Equation 2] 

 

In the introduction to this section we showed how a tangent kite results from the circle’s 

symmetry.  

 

A  If we extend the tangents, we see how the circle centre lies on the angle bisector.   

 

From A above we found that the angle at the 

centre is twice the angle at the circumference. 

Because of the right angle in the triangle lower 

right, the blue and red angles there sum to  
𝜋

2
. Therefore the blue and red angles at the centre 

sum to 𝜋.  

 

We shall call this our CO theorem. 

 

𝑒2 + 𝑓2                                              =  𝑎2 

             𝑓2 + 𝑔2                                     =  𝑏2  

                      𝑔2 + ℎ2                           =  𝑐2 

                               ℎ2 + 𝑒2                  = 𝑑2 

 

𝑎2 + 𝑐2 = 𝑏2 + 𝑑2 

 

This is a necessary condition for the blue 

quadrilateral to be orthodiagonal. It turns out 

that it is also sufficient. That is to say, you 

cannot draw a quadrilateral which satisfies 

that equation without its diagonals being 

perpendicular. We prove that in the section 

Theorems and their converses. 

Manipulate Equation 1 and Equation 2. 

You should find that c = b or d, and 

correspondingly, a = d or b. The 

quadrilateral has two pairs of equal, 

adjacent sides: it is a kite.  



B  We show the internal and external bisectors of an angle. Working out the angles, we see 

that they must be perpendicular.  

 

 

C  Combining these two facts we deduce that the blue quadrilateral is an O. Alongside we 

have drawn the figure with the dotted circles resulting from the converse of Thales’ theorem.  

  

 

 

   
 

With figure B in mind, explain this fact about an N and therefore all convex quadrilaterals. 

Divide the quadrilateral by its diagonals into four triangles and inscribe a circle in each. 

Then the lines joining opposite circle centres are perpendicular. 

 

 
 

 

 

 

 

 

 

 
 

 


