
3.8 Tucker circles and the orthic triangle 
 

Tucker circles  
 

The upper figure contrasts two pairs of lines, one parallel, the other antiparallel. In the main 

figure we start at some point P on a triangle and follow the path shown by the alternating 

lilac and red lines. Correspondingly, we move alternately antiparallel and parallel to the side 

opposite. This is indicated by the suffix to the letter. Thus line 𝑑𝑎 is antiparallel to side d, 

𝑒𝑝 is parallel to side e. What we find is that, after six moves, we arrive back at our starting 

point. 

 

 
 

We also show that the 6 vertices of the hexagon we have traced lie on a circle. We shall 

prove that this is indeed so. 

 

 



 

From A we extract the facts we need. 

 

From the parallel lines and equal angles in B we infer that 1234 is a regular trapezium. 

Regular trapezia are cyclic, so points 1, 2, 3, 4 share a circle. 

 

From the equal angles in C we infer that the quadrilateral 2345 is cyclic, so points 2, 3, 4, 5 

share a circle. 

 

From the parallel lines and equal angles in D we infer that 3456 is a regular trapezium, so 

points 3, 4, 5, 6 share a circle.  

 

With the sets of concyclic points side by side: 

 

1 2 3 4 

   2 3 4 5 

      3 4 5 6 

 

we see that each set shares three points with each of the others. Therefore all six are 

concyclic. [We use this argument also in our discussion of The nine-point circle.] 

We call the resulting circles Tucker circles. (Notice that the small triangles are congruent, and 

similar to the main triangle.) 

 

The orthic triangle 
 

Imagine that we had begun our path round the triangle at the foot of an altitude and only 

taken the lilac steps. The result would have been the triangle joining the feet of all three 

altitudes, the orthic triangle (shaded in A). In this sequence of figures we track a particular 

angle round the figure, showing how the result is three sides, each antiparallel to the opposite 

side of the main triangle. (The small triangles isolated by the orthic triangle are in general 

similar rather than congruent.)  

 

  
 

In B we identify in a right triangle the complementary angle to 𝜶, 𝜶∗. 

In C we identify in a second right triangle the complement-of-the complement: (𝜶∗)∗ = 𝜶.  

In D we identify a second angle on the same base in a cyclic quadrilateral, and thus equal to 

the first by the same segment theorem. 

 



We shall prove that the altitudes bisect the angles of the orthic triangle internally, and the 

sides of the original triangle bisect them externally.  

By the converse of Thales’ theorem we can construct the red and blue circles. 

 

 
 

The interior angle bisectors give us the centre of the incircle of the orthic triangle, and each 

interior angle bisector and a pair of exterior angle bisectors give us the centre of one of its 

three e-circles: 

 

 
 

 

Applying the same segment theorem:  

in the red circle, we have the two equal 

angles 𝛼 ; 

in the blue circle, we have the two equal 

angles  𝛽. 

But we see that these two angle sizes 

label the same angle. 

Therefore 𝛼 = 𝛽 and, generalising from 

the particular altitude chosen, each 

altitude bisects an angle of the orthic 

triangle internally. Since an altitude is 

perpendicular to a side, the side of the 

main triangle  passing through the foot 

does so externally. 

 

 



It turns out that the orthic triangle solves the following problem posed in 1775 by Giovanni 

Fagnano and solved by Lipót Fejér as we shall describe: Given a triangle, what is the 

smallest triangle within it with a vertex on each side? 

 

 

 

 
 

 

 

 

                                                                                                
 

1. Because the tension is constant throughout, the resultant force on each ring is a vector 

bisecting the angle there. Since the forces are in equilibrium, they all pass through the same 

point, thus proving that the angle bisectors of a triangle are coincident. 

 

2. In equilibrium, the potential energy is least, which means that the tension is minimal, 

which in turn means that the perimeter is least. We have thus found the triangle required by 

Fagnano. 

 

3. Since there is no net force along a rod, the cord must make equal angles on either side.  

We can also use a mechanical computer of the sort 

employed by Mark Levi to show several things. 

Though our set-up is idealised, we shall specify the 

elements to make the properties more believable. The 

outer triangle is formed from three steel rods. The 

inner triangle is an elasticated cord. This runs without 

friction through nylon rings through which the steel 

rods pass. (You can think of the elements as deck 

furniture on a yacht.) We imagine the set-up has 

come to equilibrium. 

 

We choose a position for vertex P on side 

BC and reflect it in two sides of the 

triangle. The perimeter of triangle PQR is 

also the length of the path P’QRP’’. We 

can shorten the path by straightening it out, 

so Q goes to Q’ and R goes to R’. We 

cannot reduce the angle ∠𝑃′𝐴𝑃′′, which is 

twice ∠𝐴, but we can reduce |𝑃′𝑃′′| by 

reducing the three equal lilac lengths, and 

we can do that by moving P till it is the 

foot of the altitude from A. By symmetry, 

the optimal positions for Q’ and  R’ must 

also be the feet of altitudes. So the solution 

to Fagnano’s problem is the orthic triangle. 



 
 

We can continue to subdivide the three similar triangles around the orthic triangle 

indefinitely: 

 

  
 

 

Triangles sharing a vertex have opposite orientation. The orthic triangles of different orders 

are also similar to each other. 

 

 

Working out the supplementary angles in 

brackets, we see we have specified the 

orthic triangle. We have thus found the 

solution to Fagnano’s problem by a 

mechanical method. 

 



One interesting property of the orthic triangle is the following. We draw the circumcircle of 

the original triangle, and tangents at the vertices. This gives us the tangential triangle, the 

dual of the original. We shall show that the orthic triangle is similar to this. 

In this figure an asterisk indicates the complementary angle: 𝛼∗ = (
𝜋

2
− 𝛼). 

 

 
 

 

We follow two routes, starting at P: 

 

1.  

At P we have 𝜃.  

At O, 2𝜃 (angle at circle centre = twice angle at circumference). 

At T, 𝜃∗ (base angle in lilac isosceles triangle = 
𝜋−𝜃

2
). 

At T, 𝜃 (tangent meets radius at right angles, so we have (𝜃∗)∗ = 𝜃). 

 

2. 

At P we have 𝜃. 

At Q, 𝜃 (because, as proved above, a side of the orthic triangle is antiparallel to the 

corresponding side of the main triangle). 

 



So the green and red angles on alternate sides of the transversal between a side of the orthic 

triangle and a side of the main triangle are equal. The two sides are therefore parallel, and the 

triangles similar, as required. 

 

 

 

 


