3.6 The Conway circle

The following circle theorem due to John Horton Conway is a surprising example of a piece of elementary geometry only discovered in the last century.

The sides of a triangle are extended as shown.

We have 6 congruent right triangles, each with short side r, middle side $t+u+v=s$, where $\mathrm{s}=\frac{a+b+c}{2}$, the semiperimeter of the triangle. P, Q, R, S, T, U therefore lie on a circle with radius $\sigma=\sqrt{s^{2}+r^{2}}$. In 4.2: From Heron to von Staudt we meet two formulas for the area A of a triangle:
$A=\sqrt{s(s-a)(s-b)(s-c)}$ and $A=r s$.
Combining these, $r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$.
Substituting in the top equation and simplifying, $\boldsymbol{\sigma}=\sqrt{\frac{s^{3}+(\boldsymbol{s}-\boldsymbol{a})(\boldsymbol{s}-\boldsymbol{b})(\boldsymbol{s}-\boldsymbol{c})}{\boldsymbol{s}}}$.

