
3.1 Shvetsov’s right angle 

 
A preliminary survey 
 

We begin with an isosceles triangle. A therefore has a symmetry axis. The red lines bisect 

right angles. Thus the red lines are equal and perpendicular and define a square. The blue 

right triangles are isosceles. The dotted circle touches the triangle base at the foot of the 

altitude. 

 

In B we see that we can interpret the green line in A as an altitude. The dotted circle no 

longer touches the base at the foot of the altitude. But, to our surprise, we find that the red 

lines are again equal and perpendicular and define a square which has one vertex on the 

altitude. The right triangles are no longer isosceles but are congruent. 

 

In C we have a limiting case: the altitude coincides with a triangle side. The circle right of the 

altitude is of zero size; the circle left of the altitude coincides with the dotted circle. 

 
 



 

In D we interpret the green line as any cevian, not necessarily one perpendicular to a triangle 

side. Again we find we get the right angle between the red lines, but the lines are no longer 

equal. The blue right triangles are no longer congruent but remain similar. 

 

E again is a degenerate case. We retain the right angle but, as in case C, the right triangles are 

reduced to their hypotenuses. 

 

What happens if we have an obtuse-angled triangle so that an altitude can fall outside the 

base or we take a cevian to meet the opposite side outside the triangle? In neither case are the 

red lines perpendicular. It seems that the solid black circles must lie on opposite sides of the 

green line for this to be the case. The point is that here the altitude is not a cevian, and all five 

cases A to E illustrate a theorem about cevians.  

 

Our theorem is: Given a triangle KLM divided by a cevian KD, the centres of the incircles in 

the sub-triangles subtend a right angle at the point where the incircle of KLM touches side 

LM.  

 

Source: Arseniy Akopyan, Geometry in Figures, 4.5.34, 4.5.35, the latter due to D. V. 

Shvetsov and used in the Sixth Geometrical Olympiad in honour of I. F. Sharygin, 2010, 

Correspondence round, Problem 8.  

 

We shall prove this. A is our figure. We must show that angle 𝐼1𝑇𝐼2 is a right angle. 

 

A 

 
In B we have drawn radii from the smaller circles to the cevian and the base. We have two 

congruent right kites. The red lines therefore bisect the angle to the left at F and to the right 

and are perpendicular. 

 



B 

 

    
 

  C                                                                                      

 
 

 
 

 

D 

 

By the converse of Thales’ 

theorem F lies on the circle with 

diameter 𝐼1𝐼2. 

In C we have shown this circle, 

which cuts the base in two points, F 

and T’. We have projected the 

diameter on to the base and drawn 

an axis of symmetry for the circle 

perpendicular to the base. One 

consequence of this symmetry is 

that |𝑇1𝐹| = |𝑇′𝑇2|. The full 

argument follows. 

 

 

In D we have used the tangents-from-a-point 

theorem to find equal distances. We have also 

done a little arithmetic on the figure to simplify 

our final algebra, which reduces to this: 

 

𝑠 + 𝑡 = 𝑝 + 𝑞 − 𝑠, 2𝑠 = 𝑝 + 𝑞 − 𝑡 . (1) 

𝑎 + 𝑝 + 𝑡 = 𝑎 + 𝑞, 𝑞 = 𝑝 + 𝑡 . (2) 

 

Substituting into (1) from (2): 2𝑠 = 𝑝 +

b = b’ by the parallel intercept 

theorem, (which in turn identifies 

equal ratios in similar triangles).        

    (A) 

 

c = c’ because a circle radius 

perpendicular to a chord bisects it. 

                                               (B) 

Given (A), (B), we have by 

subtraction d = d’. 



 
 

So |𝑇1𝐹| = |𝑇𝑇2|.  
This means that T’ and T are one and the same point. 

That in turn means that T lies on the red circle 

and, by Thales’ theorem, 𝐼1𝑇𝐼2 is a right angle, as required. 

 

Corollaries 

 
1. Look again at D . Substituting back into equation (1) we find 𝑞 − 𝑠 = 𝑡. 

 
2. In E we have used trigonometry and similar triangles to work out lengths. 

 

E 

 

 
 

The paradox is resolved when we realise that, having chosen our triangle, and therefore 

𝑟, 𝛼, 𝛽, though we are free to choose 𝜃, our choice will determine the sizes of 𝑟1, 𝑟2. 

 

Because |𝑇1𝐹| = |𝑇𝑇2|, we have: 

𝑟1 tan
𝜃

2
= (𝑟 − 𝑟2) cot 𝛽             (3) 

and therefore 

𝑟2 cot
𝜃

2
= (𝑟 − 𝑟1) cot 𝛼.            (4) 

 

Multiplying (3) by (4): 

𝑟1𝑟2 = (𝑟 − 𝑟1)(𝑟 − 𝑟2) cot 𝛼 cot 𝛽,  (5) 

an equation independent of the angle 

𝜃 the cevian makes with LM. 



Take an equilateral triangle with unit inradius. This reduces equation (5) to: 

 𝑟1𝑟2 = 3(1 − 𝑟1)(1 − 𝑟2). Taking 𝑟1 =
1

2
, gives 𝑟2 =

3

4
, a ratio 𝑟1: 𝑟2: 𝑟 ∷ 2: 3: 4. 

 

 


