2.1 The orthoptic circle

B shows an ellipse. P lies at the intersection of two perpendicular tangents. What is its locus? Since we are not told the values of a and b, we take the limiting cases A and C.

In A we take the flat ellipse to be the diameter of a circle. A right angle is the angle it subtends at the circumference. The locus is therefore a circle. In C the locus is a circle by symmetry. We can imagine a continuous transformation taking the flat ellipse to the circle and would not expect the locus of P to change between the limits we have chosen. It remains then to prove that the locus in the general case is indeed a circle.

We need the condition for a line to be tangent to an ellipse. We solve $y=m x+c$ with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to give a quadratic in x, then put in the condition for equal roots, obtaining $y=m x \pm \sqrt{b^{2}+a^{2} m^{2}}$. We solve this to give a quadratic in m, representing a pair of tangents: $\left(x^{2}-a^{2}\right) m^{2}-2 x y m+\left(y^{2}-b^{2}\right)=0$, then impose the condition for the tangents to be perpendicular, i.e. for the product of the roots to be -1 , and we have $x^{2}+y^{2}=a^{2}+b^{2}$, the equation of a circle, centre the origin, radius $\sqrt{a^{2}+b^{2}}$.

We can check this value for the radius in our three figures. A is clear. In B and C we use Pythagoras. To do so in B we first set the 'frame' perpendicular to the axes.

