
1.1 Circle symmetry problems 

 
The following thirteen problems depend on particular aspects of circle symmetry. 

 

Problem 1.1.1 

 
The symmetry of the circle is nowhere more apparent than in the following little problem. 

 

A ring is thrown on a floor of square tiles in such a way that the part covering one tile (U) is 

equal in area to half the ring. How does the area t of the vertically opposite region (T), 

depend on the magnitudes of the coordinates of the tile junction, (a, b)? 

 

 
 

 

The mirror symmetry of the circle allows us to delimit the congruent regions on the right. Let 

the region Q have the area q, etc. We equate the red areas within U to the blue areas outside: 

 

𝑞 + 𝑟 + 𝑠 + 𝑡 = 𝑞 + 𝑠 + 3𝑡 , 

𝑟 = 4𝑎𝑏 = 2𝑡 , 

𝑡 = 2𝑎𝑏 . 

 

Problem 1.1.2 
 

Recalling that the point of contact of two circles lies on their line of centres, confirm that 

both these triangles contain a right angle. 

 



 
 

Problem 1.1.3 
 

In the next problem we must find the radius of the green circle. Confirm that we can pick out 

of the figure the triangle middle right. We separate this into the upper and the lower one. 

Apply the cosine rule in each. Eliminate cos 𝜃 from the two equations you obtain to leave r.  

(You should get 6/7.) 

 
You may also use a formula due to Descartes. Go to the Wikipedia entry ‘Descartes’ circle 

theorem’.  

 



A symmetrical half of the black figure has been studied from ancient times and yields a lot of 

interesting geometry. Go to the Wikipedia entry ‘Arbelos’. 

 

Problem 1.1.4 
 

                                                                  
 

 

As another consequence of the symmetry, any three circles, each touching the other two, 

touch a fourth externally and internally: 

 

       
 

 

Problem 1.1.5 
 

Here is another problem exploiting the same symmetry. We discuss the solution beneath. 

In the this next example, extract 

three isosceles triangles, two 

contained in the third, to show that 

𝑎 = 𝑏 + 𝑐. 
 

Joining the centres of the three 

black circles, we have a triangle. 

This reminds us that the vertices of 

any triangle can be the centres of 

circles touching in pairs. To 

express this fact algebraically, if 

the triangle side lengths are a, b, c 

and the circle radii e, f, g , we 

have: 

 

𝑎 = 𝑒 + 𝑓  

𝑏 =         𝑓 + 𝑔  

𝑐 = 𝑒         + 𝑔  

 

And, solving these equations: 

 

𝑒 =
𝑎−𝑏+𝑐

2
  

𝑓 =
𝑎+𝑏−𝑐

2
  

𝑔 =
−𝑎+𝑏+𝑐

2
  



 

The figure shows an infinite series of circles, 𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑖, … . 𝐶𝑖 touches 𝐶0, 𝐶𝑖−1 and the 

line.  𝑟0 = 𝑝2, 𝑟1 = 𝑞2, 𝑝 > 𝑞. Express 𝑟𝑖 in terms of 𝑟𝑖−1 and 𝑟𝑖−2. Also find 𝑟2, 𝑟3, 𝑟4 in terms 

of p and q and comment on the general sequence of denominators. 

 

 
 

We have the right triangles picked out below and can use Pythagoras’ theorem to find 

lengths. We then equate the lilac length to the sum of the blue and the red. 

 

√𝑟0𝑟1 =  √𝑟0𝑟2 + √𝑟1𝑟2, or 
1

√𝑟2
=

1

√𝑟1
+

1

√𝑟0
.  

This generalises to: 
1

√𝑟𝑖
=

1

√𝑟𝑖−1
+

1

√𝑟𝑖−2
, or 𝑟𝑖 =

𝑟𝑖−1𝑟𝑖−2

(√𝑟𝑖−1+√𝑟𝑖−2)
2 . 

 

We find 𝑟2 = (
𝑝𝑞

𝑝+𝑞
)

2

, 𝑟3 = (
𝑝𝑞

2𝑝+𝑞
)

2

, 𝑟4 = (
𝑝𝑞

3𝑝+2𝑞
)

2

. The denominators are squares of 

consecutive numbers in sequences of Fibonacci type, i.e. those where each term is the sum of 

the preceding two. 

 

 



 
 

 

Go to the Wikipedia entry ‘Ford circles’ for more properties of such circle sequences. 

 

Problem 1.1.6 
 

This example illustrates most aspects of the circle’s symmetry.  

 

 A   Prove that 𝛼 =
𝜋

4
 .  

 

B    Adding the essential lines to the figure gives us the two important isosceles triangles and       

the perpendicular from the centre of the small circle. Chasing angles into the small right 

triangle, we have 2(𝜃 + 𝜑) = 𝜋 −
𝜋

2
, 𝜃 + 𝜑 =

𝜋

4
= 𝛼. 

 

C  Completing the big circle, we can construct the large red isosceles triangle, similar to the 

small one in B. We identify P’, the point where MQ cuts the horizontal diameter, with P. 

The blue lines mark sides of big and small right isosceles triangles. We can use either the 

property that the angle at the centre is twice the angle at the circumference, or the ‘same 

segment’ theorem, to determine 𝛼. 
 

Marking the right angle at the top draws our attention to the fact that PQ bisects this angle. 

 

D  Incorporating the lilac quadrilateral into a classic ‘Pythagoras’ figure, this bisector 

becomes the diagonal of a square.  



 

    

 
 

Problem 1.1.7 

 
In this problem we can take advantage of the symmetric relation between the two circles. 

 

Show that the line segments AB and CD are of equal length (the ‘eyeball’ theorem). 

 



 
 

 

The line of centres is a symmetry axis for the whole figure so we only need consider half. 

We can make the symmetric relation between the two circles clear by giving them the same 

orientation: 

 

 
 

Problem 1.1.8 

 
 

d is the distance between the 

circle centres; R, r, are the 

circle radii, s, t  are half the 

lengths to be compared. 

 

Because radii meet tangents at 

right angles, we have two 

right triangles with equal 

hypotenuses.  

 

Within each, the smaller and 

the larger are similar. 

 

Write down equal ratios of 

corresponding sides and thus 

prove the claim. 



The figure shows two unit circles in a square. Tangents to these extend from the upper 

corners. The tangents and the upper edge circumscribe a third circle. What is its radius? 

 

 
 

The diagram for this classic problem contains two equal pairs of tangents from a point and 

therefore provides right triangles in which to use trigonometry. The symmetry of the figure 

means we need only use the part shaded. 

 

Notice in the enlargement: 

1) The blue triangle gives us 𝜑,  

2)  𝜃 = (
𝜋

4
− 𝜑).   

 

Solve the green triangle for r. 

 

Generalise your result  for an initial rectangle of the same width and height h. 

 

Problem 1.1.9 
 

For this see 4.3.1: Turning a C into a CO. 

 

Problem 1.1.10 

 

A problem of Ross Honsberger: 

 

We have 4 like circles passing through the same point. Show that the 

quadrilateral circumscribing them is cyclic. 

 



 

 

 

 

 
 

Problem 1.1.11 

 

This requires you to bring together two basic properties. Note the equal arc 

lengths. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You will immediately want to insert the circle centres. 

Being equidistant from the intersection point, they are 

concyclic. And therefore the quadrilateral joining them is 

likewise cyclic. 

 

When you join the centres in pairs, what can you say about 

the sides of this quadrilateral and the sides of the original 

one? 

 

Proceed from there. 

Show that A, I, M are collinear. 



 

 

 

 

Problem 1.1.12 

 
1’2’3’4’5’6’7’ is a regular 7-gon. 

We label the circles with the points where they touch a circumscribing circle. 

Vertex 2 is the intersection of circles 1’, 2’, 

Vertex 3 is the intersection of circles 1’, 3’, 

Vertex 4 is the intersection of circles 1’, 4’, 

etc. 

Show that 1234567 is a regular 7-gon. 

 

 

 
 

                            

We thus end up with the last figure, 

from which we see that 1234567 

is an enlargement of 1’2’3’4’5’6’7’,                                                             

scale factor ½, centre 1/1’, and therefore also 

a regular 7-gon.  

          

 

By symmetry 1 is the reflection of 2’ in the line 

02.  

By Thales’ theorem angle 021 is a right angle. 

Therefore 122’ is a straight line with 2 the 

midpoint. 

 

We can argue similarly for each vertex of 

1234567:  

 

 

Though we have chosen the value 

n = 7, the argument can be 

extended to any regular n-gon. 



                          

 

 

 

 

Problem 1.1.13 
 

This problem, 8.13 from Arseniy Akopyan’s collection ‘Geometry in figures’, is special in 

that it is not clear whether we are being presented with a special or the general case. 1. is the 

figure. Two regular pentagons share a vertex. We must show that the apparent coincidence of 

the four lines joining corresponding vertices is real. 2. We ask ourselves if the regular 

pentagon can be replaced by another regular polygon. We try one and find it can. 3. With 

dynamic geometry software we can move the point of coincidence. It seems to follow the 

circumcircle of the fixed pentagon and indeed to fall on the the second point of intersection 

of the circumcircles of the two pentagons. 4. We now guess that the problem is not about 

regular polygons at all, but about points in corresponding positions on two circles.   

 

               1.                                   2.                                3.                                     4. 

 

 

 

 

 

 

 

 

 

 

 

The two circles cut at O and again at Q. We take as reference line the radius joining O to the 

respective circle centres and consider point P on the red circle such that OP subtends an 

angle 𝜃 at the centre of the red circle, and point P’ on the blue circle such that OP’ subtends 

the same angle at the centre of the blue circle. Since the angle at the centre of a circle is twice 

that at the circumference, angles PQO and P’QO are both 
𝜃

2
. This requires that P’ lies on PQ, 

i.e. PP’Q is a straight line. Taking two other points with equal corresponding angles, S, S’, 

we therefore know that SS’Q is also a straight line, and similarly for all such point pairs. 

 

   
 



 

 
 


