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A.1 What you need to know 

 

(Most theorems without a name are to be found in Euclid’s ‘Elements’.) 

 

Angles: 

 

• Interior and exterior bisectors perpendicular 

 

Trig. ratios, theorems and identities 

 

• The signs of the ratios in the four quadrants 

• (sin 𝜃)2 + (cos 𝜃)2 = 1  

• sin 𝜃 = cos (
𝜋

2
− 𝜃)  

 

 

 

 

 

 

 

 

• The sine rule: 
𝑎

sin 𝛼
=

𝑏

sin 𝛽
=

𝑐

sin 𝛾
 

• The cosine rule: 𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝛼  

 

Triangles:  

 

• Area of a triangle = 
1

2
𝑏ℎ =

1

2
𝑏𝑐 sin 𝛼 

 

• Pythagoras’ theorem and its converse 

       𝑎2 + 𝑏2 = 𝑐2  

• Ratios in similar triangles 

 

      
𝑎

𝑎′
=

𝑏

𝑏′
=

𝑐

𝑐′
 

 

• Interior angle sum = 𝜋 

 

 

Circles: introduced in the text but summarised here: 

 

 
 

 

  



 
 

• Tangents from a point equal 

• Tangent meets radius at right angles 

• Point of contact of two lies in line of centres 

• Common chord perpendicular to line of centres 

• Intersecting chord theorem (converse also true): 𝑝𝑟 = 𝑞𝑠 

 

 
 

• Angles subtended by same chord/arc at all points on circumference in same segment 

equal (same segment theorem) 

• Angle subtended at centre twice that subtended at circumference by same chord: 

special case: angle in a semicircle a right angle (Thales’ theorem, converse also true) 

• Alternate segment theorem 

• Three non-collinear points define a circle 

 

 
• Rotating ‘same segment’ figure about centre, we have equal segment theorem: 

angles subtended at points on circumference by equal chords/arcs equal 

 

 



Convex quadrilaterals: introduced in the text but summarised here: 

 

 
 

• Interior angle sum = 2𝜋 

• In cyclic quadrilateral: opposite angle pairs sum to same (converse also true) 

• In tangential quadrilateral: opposite side pairs sum to same (Pitot’s theorem, converse 

also true): 𝑎 + 𝑐 = 𝑏 + 𝑑 

• In orthodiagonal quadrilaterals: opposite side pair squares sum to same (converse also 

true): 𝑎2 + 𝑐2 = 𝑏2 + 𝑑2 

 

Convex polygons in general 

 

• Circumcentres of cyclic polygons found by bisecting sides perpendicularly 

• Incentres of tangential polygons found by bisecting angles 

 

Logic: introduced in the text but summarised here 

 

• Necessary conditions 

• Sufficient conditions 

• ‘If and only if ...’ 

• A theorem and its converse 

 

The statement on the left is given symbolically on the right. 

 

Logical implication: 

 

A being true is a necessary condition for B being true.  𝐵 ⟹ 𝐴. 

A is true if B is true.      𝐵 ⟹ 𝐴. 
If A is false, B is false.      𝐵 ⟹ 𝐴. 
 

A being true is a sufficient condition for B being true.  A ⟹ 𝐵. 

B is true if A is true.      A ⟹ 𝐵 

If B is false, A is false.      A ⟹ 𝐵. 

 

Logical equivalence: 

 

A being true is a necessary and sufficient condition for B being true. 

         A ⟺ 𝐵. 

B is true if and only if A is true.     A ⟺ 𝐵.  



 

A theorem and its converse: 

 

If a theorem states that  A ⟹ 𝐵, its converse states that 𝐵 ⟹ 𝐴.  

A converse may or may not be true. If it is, we can again write 𝐴 ⟺ 𝐵. 
 

A ‘characterisation’ of a shape is definitive of it. So, again, if B is a characterisation of 

shape A,                                                                                         𝐴 ⟺ 𝐵. 

                                   

We shall go outside Euclidean geometry only to use certain useful transformations. These 

comprise translations, reflections and rotations, and one other type: circle inversion. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The construction shows how we map one 

point, P, to another, P’ by the ‘circle of 

inversion’, 𝐶𝑖. 

 

The result is that |𝑂𝑃| × |𝑂𝑃′| = 𝑟2. 
 

The transformation has useful properties. 

In particular, a circle goes to a circle, 

except one through the centre, O, which 

goes to a straight line through the 

intersection points of the circle in 

question and 𝐶𝑖. 

 



 

 

 

A.2 Introduction 

 

This book is aimed at those preparing for the geometry problems encountered in national or 

international contests for high school students. Because contestants may come from any 

educational system and have studied any curriculum, the contest must assume no specialised 

knowledge. The purpose of a problem is therefore to tax the student’s ingenuity in using core 

high school geometry. The emphasis in a book like this must therefore be heuristics rather 

than algorithmics, strategy rather than tactics. The competitive nature of a contest should not 

spoil the student’s delight in the mathematics. We enjoy watching a stage magician because 

we enjoy being fooled. An elementary knowledge of brain science only adds to our 

enjoyment as we witness how little control our conscious, rational minds exert over our 

unconscious, instinctive mental processes. For this reason, even when we read how the trick 

is done, our amusement is not lessened and may even be increased. In his Internet site Cut-

the-knot, the late Alexander Bogomolny had animated geometric figures he called ‘droodles’. 

The points were little eyes and when the figure hit an interesting configuration, the little eyes 

would look straight out at you in surprise. In mathematics a result is explained by a proof. 

But, as in stage magic, if the trick is a good one, our surprise should be replaced by the 

pleasure of watching the mathematical machinery work. I’ve picked results, most well 

known, which I hope are surprising on a first encounter, but to which elementary methods 

give immediate access.  

 

 
 


