
                          Soap Films 
 
The workshop is designed for Y8 students but can be tailored to older or younger 
groups. (The material presented in these notes spans the age range Y5 to Y13.) The 
session falls in two parts of an hour-and-a-quarter. The idea is to perform physical 
experiments (E) but to do small pieces of maths (M) in parallel to convince ourselves 
that what the experiments tell us makes sense. Sufficient apparatus is provided for 30 
children, working in pairs. The M units to include depend on the children involved. 
None is essential. What is necessary is to ensure that the children grasp on an 
appropriate level the meaning of the following mathematical terms: length, area, 
angle, simple proportion, and the following terms from physics: potential energy, 
work, force, because the experiments concern these quantities. For younger children 
the workshop can be used as an opportunity to explain them. The piece of physics P, 
presented without experimental justification, relates the 3 physical quantities and 
enables us to explain the observation that 3 ribbons (and walls in general) meet at 
120°.	We can omit this and just state as a fact that the force (per unit width) is the 
same for each of the soap ribbons. In the same way we can omit all experiments 
which are there only to justify a mathematical result. 
 
Abbreviations: KB – ‘Kubik Bubbles’ kit for making skeleton polygons in  Part 1         
  and polyhedra in Part 2 
                         MP – ‘motorway plates’ kit for Part 1 (perspex sheets which can be  
                                    separated by means of movable spacers) 
                         OHP – overhead projector for display of ‘motorway’ figures. Be sure  
                                    to put thin spacers (counters or coins) under the perspex  
                                    sandwich. Otherwise the wet model will stick to the platen. 
                                    Projection on to whiteboard. 
 
Part 1: structured work in 2 dimensions, Part 2: structured and free work in 3 
dimensions. Part 3: extension work. This may be developed in a school maths club.  
There is overlap here with the masterclass ‘Surfaces’, of which ‘Minimal surfaces’ 
forms a section. 
 
Part 1 
 
We want to use soap films to solve a problem:  
What is the smallest total length of motorway needed to join  cities? 
We use a ribbon of soap film of constant width to model a motorway. 
 
We prepare the children for the ‘motorway’ experiments by showing them MP and 
describing how we are going to use the apparatus. 
_____________________________________________________________________ 
 
We claim that the ribbon will try to attain the shortest possible length. 
What is the evidence for that? 
 
E1: 
 



Apparatus: Square frame with handle, made from KB; cotton loop tethered to corner 
in which handle inserted; single KB straw. 
 
Test: Dip frame in soap solution and withdraw slowly so that film forms across frame. 
 
Use single straw to pop film within loop. 
 
Observation: Loop adopts circular shape. 
 

 
 
Inference: The area within the square is least when the area within the loop is greatest. 
This is the case when the loop adopts a circular form. The soap film has therefore 
adopted the smallest possible area for its boundary. 
 
Our ribbon has a constant width so its length is proportional to its area. 
_____________________________________________________________________  
 
 
 
P: When you stretch a rubber band, the force you need increases as the band gets 
longer. This is not so with a band of soap. 
 
Here is a band of soap of width cm. 
In the first diagram we pull with a force  through a distance  cm.  
 

 
We have added an area cm . Each cm  added increases the potential energy of 
the band. Call this increase . We have achieved this by doing work: moving the 
force  through the distance . Work done = = potential energy gained = . 
 
In the second diagram we pull with a force  through a further distance . 
The increase in energy is just the same as before so we can write . 
 



 
 
But also equals , so	𝐹( = 	𝐹*. In other words the force stays the same. 
 
E2: 
 
We use lengths of string to model the soap ribbons, in which, we now 
know, the tension forces are equal. 
 
This experiment involves just the one group of children who volunteer for it. 
 
Apparatus: A ring. Into this, 3 strings are hooked. The strings run over pulleys. Their 
axles have a handle at each end. The strings support 100 g masses so that the tension 
force in each is equal. An improvised protractor, consisting of a folded sheet of stiff 
card.  
 
Test: A child holds each pulley. You hold the ring still. The children stand in a circle. 
When you the ring, tell the children to adjust their positions till the ring stops moving. 
When this happens, check the angles between the strings with the protractor. 
 
Observation: The angles are equal (and therefore each = +,-°

+
 = 120°.). 

 
Inference: Symmetry alone tells us that this is what we would have predicted. But, 
since soap ribbons adjust their lengths to give the minimum total length, we now also 
expect that, where 3 ribbons meet in our ‘motorway’ experiment, they will do so at 
angles of 120°. 
 
 
E3: ‘Motorway’ experiment no.1. 
 
Apparatus: MP, spacers defining equilateral triangle, 3 dots placed similarly on 
central whiteboard. 
 
Prediction: Child volunteer invited to draw figure expected. Rival figures drawn in 
different colours. Vote taken. 
 
Test: Teacher’s MP dipped in soap solution. 
 
Observation: 120°	trigon obtained, displayed on OHP. 
 
 
 
E4: ‘Motorway’ experiment no.2. 
 
As above, triangle scalene but having no interior angle as great as , and 
experiment performed by all pairs. 

 



 
Observation: 120°	trigon persists. 
 
 
M1: 
 
It is hard to show from scratch that the figure is a trigon but, given that it is, we can 
show that the angles must be equal. 
 
E5: Teacher demonstration.  
 
Apparatus: single sucker on whiteboard. Single string looped round this with dry-
wipe pen in end loop. 
 
Draw the result, a circle (Figure 1). 
 
Point out that: 
1)  The black, blue, red and green lengths are all the same (the radius of the circle). 
2)  The tangent makes the same angle – a right angle - either side of the radius. 
 
E6: Teacher demonstration. 
 
Apparatus: Single sucker replaced by two. New string looped around both suckers. 
 
Prediction: Ask what shape will appear this time. 
 
Draw the result, an ellipse (Figure 2). 
 
Call the two ‘centres’ into which the original one has been split foci and point out 
that, again, 
1) The black, blue, red and green lengths are all the same. 
2) The tangent makes the same angle either side of the radius. 
   
 



 
 
The argument runs as follows. 
 
In Figure 3, , 𝐶(, 𝐶*, 𝐶+ are our cities. Centred on 	𝐶+ we’ve drawn a circle which 
shares a tangent with the ellipse. 
The combined length of the two black or two blue or two red or two green roads is the 
same. However the road which comes from the junction to 𝐶+ is shortest at the point 
of tangency. At that point therefore the total length of the three roads is as small as 
possible. 
Notice the pair of equal angles, both equal to ‘circle’ + ‘square’ (Figure 4). 
 
Ask the students to suggest how the argument might continue. 
 
If we’d drawn our ellipse round 𝐶* and 𝐶+ and our circle round𝐶(, or our ellipse round 
𝐶+ and 𝐶( and our circle round𝐶*, we’d have found a different pair of angles equal in 
each case. 
Therefore all three must be equal. 
 
 
M1a 
 
Given a triangle, how do we locate the Fermat point? On the left we have drawn 
equilateral triangles on two sides of our triangle and also their circumcircles. Because 
of the cyclic quadrilaterals like that shown in red, we know that the angle enclosed by 
the dashed red lines is the supplement of 𝜋 3⁄ , 2𝜋 3⁄ . The same would be true for all 3 
such circles, therefore the point of intersection of any two, in particular the red and 
the green, is our Fermat point.  



 
But we also note two angles in the same circle segments of the red and green circles 
respectively. These total 𝜋. So at the vertex marked by a dot the green line is extended 
by the red dashed line. And we could draw a similar line comprising a solid red 
segment on the right and a dashed green segment on the left. All we need draw 
therefore are the two lines shown in the figure on the right. 
 

   
 
 
 
E6a 
 
We can use a 120 ° trigon to find the Fermat point. 
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E7: ‘Motorway’ experiment no. 3. 
 
A re-run of E3 but for 4 cities in a square. 
 
Observation:  
 

         
 
 
Repeat E3 and put result alongside E7. Children invited to compare. (We now have 
two 120° trigons.)  
 
 
E8: Lengths measured on the whiteboard and compared with those which result by 
simply drawing diagonals to make an ‘X’. 
_____________________________________________________________________  
 
 E9: ‘Motorway’ experiment no.4. 
 
A re-run of E4, i.e. irregular quadrilaterals tried. 
 
Challenge: what will happen if an angle of your quadrilateral is 120° or greater? 
 
Observations: 120°	trigons persist. Where angle is 120° or more, junction ‘retreats’ 
to that city. 
 
 
M2 Demonstrate the following construction. 
 
Draw equilateral triangles on two sides of the quadrilateral and draw circles through 
them: 
 



 
 
 
 
Draw the blue line. 
The red lines are your final figure. 
 

  
  
 
To show why the construction works we’ve labelled angles in the right-hand diagram. 
We’ve split a ′60°5 into a 𝜃 and a	𝜑. 
The ‘angles in the same segment’ theorem repeats these angles where shown. 
We can now use the ‘exterior angle’ theorem in the two triangles separated by the 
blue line to work out the sums shown. 
But, since we know that 𝜃 + 	𝜑 = 60°, we know that this total is 120° in each case, 
and so, by subtraction, must our third angle be.  
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E10:  Teacher demonstration on OHP. 
 
A practical alternative to M2. 
 
Apparatus: One acetate with dots for the 4 cities. Two acetates with 120°  trigons. 
 
Adjust the two acetates so that two limbs of each trigon always pass through a pair of 
points and the third limbs are in line: 
 

 
Unfortunately, there are generally two positions in which the correct angles are 
obtained. But, as long as the total distances are very different, the soap should choose 
the better solution. 
 
___________________________________________________________________ 
 
M3 A suitable exercise for older students: 
 
This motorway network, joining cities at the vertices of a rectangle (a > b), and with 
the symmetry of the rectangle, is to be built. 



Find the value of 𝜃	(≤ 90°) if it is to have the smallest total length. 
 

     
 
 
The total length, L, = 4 >
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This equation is satisfied by 𝜃 = 60°. 
 
We need to differentiate again to confirm that this does indeed give a minimum. 
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Remark: When we have 4 cities at the vertices of a square, we might be surprised that 
the resulting figure has lower symmetry than the square itself. It is an example of 
symmetry-breaking. Nature has chosen one of the two possible ways to orient the bent 
‘H’ but can easily be persuaded to set it the other way. 
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____________________________________________________________________ 
 
 
E 11: ‘Motorway’ experiment no.5. 
 
A re-run of E3 but for 5 cities forming a regular pentagon. 
 
Challenge: 
For the square we had 2 trigons. Will we have 3 this time? If so, how will they be 
arranged? 
 
Mark the vertices on the whiteboard and invite volunteers to draw the solution. 
 
Observation: 
 

    
 
 
 
 
Part 2 
 
 
E12: ‘Polyhedra’ experiments no.1. 
 
Apparatus: KB. The straws and connectors allow the children to build a selection of 
regular and semiregular polyhedra. 
 
Test: The pairs of children are free to choose which particular polyhedron they build, 
and dip it in the soap solution.  



 
Observation: Exhibit the results and asks the children if they notice any feature which 
is common to all the models and which they were expecting from work with MP. 
 
With MP the angles between the walls were displayed automatically because the wall 
edge was perpendicular to the perspex plates. In three dimensions the children have to 
look for what are in fact the dihedral  angles and spot that these are equal in all cases. 
 
Then ask the children if they notice any other features which are common to all 
models. You may have to draw attention to all of the following: 
1.) 4 edges meet in a point. 
2.) Every angle between edges is the same. 
3.) 6 walls meet in a point. 
 
Finally ask for features not common to all models. Notable here is the observation 
that not all edges are straight. 
 
 
 
 
E13: Experiment. This picks up on observations 1, 2 and 3. 
 
Apparatus:    
 
3 A5 sheets of paper for each of 4 students working as a group; 6 paper clips, 1 Pritt 
stick for the group.  



 

 
 
4 120° trigonal prisms made by folding 3 sheets of A5 paper width-ways and sticking 
them together along the red, blue and green edges as shown. Each prism represents 3 
walls of soap meeting in an edge. 
 
Test: Fit 2 prisms together so that a pair of walls merge – the corresponding sheets 
slide over each other. You can vary the angle 𝜃 and fix the prisms together with a 
paper clip. But in order to fit a 3rd prism to these two you find you have to adjust 𝜃 to 
a special value. When you’ve found this, fix the 3rd prism in place with paperclips, 
one for each pair of overlapping sheets. You now find that the 3 prisms in place allow 
a 4th to be added without any further adjustment. Secure each of the 3 overlapping 
pairs of sheets with paper clips.  
 
Observation: The final model has the greatest possible symmetry.  
There are 6 walls. Each defines a plane of symmetry.  
There are 4 edges. Each defines an axis of rotation symmetry of order 3. Each lies at 
the intersection of 3 planes of symmetry. 

Every pair of edges makes an equal angle – about 109TL °	- which we find accurately 
in M4. 



 
We find this angle at the centre of a methane molecule, which has a C atom at the 
centre and H atoms at the vertices of a regular tetrahedron, and in all structures with a 
C atom at the centre. 
 
Show a model to the children (e.g. one made from the Orbit molecular modelling kit). 
 
 
M4: Finding	𝜃. 
 

 
 
The red lines divide the tetrahedron into 4 congruent pieces. 
Each must therefore have  the volume of the whole. 

Since this is proportional to height, the blue height must be (
U
 of the total height. 

The blue height therefore stands to the red length as . 
This gives us the cosine of angle  𝜎 
and 𝜃 is the supplement of this =	𝑎𝑟𝑐𝑐𝑜𝑠 [H(

+
\. 

 
 
E14: 𝜃	by paper-folding. Teacher demonstration. 
 
(See figures for M5, following.) 
 
Take a sheet of A4. Fold  on to . 
Show that the red angle is 𝜃 by inserting into the E14 apparatus. 
 
 
 
 
 
 
 
 
 

𝜎 



 
 
 
 
 
 
 
 
 
 
M5a: Proof of E14. 
 
The last figure on the next-to-last line below shows the folded sheet and the ghost of 
the original. 
Look at the sequence of 4 figures on the last line. 
 
First figure: 
If the left-hand angle is 𝜑, so is the right-hand angle by the symmetry of the fold. 
 
Second figure: 
If the left-hand angle is	𝜑, so is the right-hand angle (alternate angle between parallel 
lines). 
 
Third figure: 
Therefore 𝜃 = 2𝜑. 
 
But from the proportions of a sheet of metric paper we have this isosceles triangle:  

. 
 
 
 
 
 
 
From the cosine rule we find that 𝜃	 = 2𝜑 = 𝑎𝑟𝑐𝑐𝑜𝑠 [H(

+
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_____________________________________________________________________ 
 
 
M5b: Alternative proof of E14, using similar triangles instead of trigonometry. 
 
 
 
 
The children rule a diagonal across a sheet of A4, marking a big black dot for each of 
the angles 𝜃/2 in these positions: 
 
 
 
 
 
 
 
They make the above fold and see that the angles come together to make the  required 
angle. 
 
Project and explain this diagram: 
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E15: ‘Polyhedra’ experiments no.2. 
 
Invite the children to investigate what happens when they repeat E12 but pop selected 
walls. 
 
Observation: Now, not only do we obtain curved edges but also curved faces. 
 
 
 
E16: ‘Polyhedra’ experiments no.3. 
 
Finally the children can join the KB pieces in any way they please and see what 
results. 
_____________________________________________________________________     
 
Part 3 

We need to show that the black angle (θ) is the same as the green angle (2φ).

The 'tetrahedral angle' by folding a sheet of A4

The angle
produced by the
fold is θ.

Here is the
tetrahedron in
3-D:

Here is the
base in plan
view:

θ/2 = 90° - α,
φ = 90° - α,
so  φ = θ/2,
2φ = θ, as
required.
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In the course of their Part 2 experiments, particularly E16, the children will have 
produced curved surfaces. What feature do they all share? [They are saddle shapes. If 
answer not forthcoming, leave question open pro tem]. 
         

E17  Class experiment 
 

Shrink-wrapped       Exhibit the pack and show how the polythene is sucked on to  
pack of water  the bottles. Tell the children that this negative pressure results 
bottles, x 1  in a surface of minimum area. Point out the saddle. Explain  
Piece of mirror it is a property of minimal surfaces that the tightest curvatures 
vinyl with acetate are equal and opposite and lie in perpendicular planes. 
attached, x 2  Demonstrate with your cupped hands. 
Red, blue felt pen, Make the red cut. Invite one child to hold a piece of mirror   
x 1   in the cut, a second to trace the section in red. 
Craft knife, x 1 Make the blue cut but, because of the effect of the first cut,  
   in the symmetrical position on the other side of the pack. 
   Invite the children to repeat their drawing, but in blue. 
   Remove the acetate pieces and, before overlaying them on the 
   OHP, ask the class what they hope to observe. 
   [A black curve because the blue curve should match the red] 
     

 
 
 
An interesting curved surface is that spanning two rings. Here are two ways to produce 
it. In the first, suitable for experimentation at home, the axis is vertical. The second, 



where the axis is horizontal, is designed as a teacher demonstration for a workshop and 
is the subject of E18. 
 

 
 
 
 
Soap solution tub, E18 Teacher demonstration 
x 1, apparatus 
as shown, x 1                      
 



 
   (a) With a volunteer set up the apparatus as described in the 
   pictures. 
Compact light source, 
x 1, screen x 1   
   Hang the apparatus in the path of the beam to project the film 
   profile  and chain as shadows. Explain that the chain (Latin  
   catena) hangs in a catenary curve and that the soap film forms 
   the solid of revolution of this, a catenoid.   
    
Chain lengths,  (b) Project the acetate showing a cocktail table and the same with 
x 15   fabric stretched over it. Point out the parallel with experiment 
   (a). Set the acetate at such an angle that the symmetry axis of 
   the curve is vertical and invite the children to hang their lengths 
   of chain so that they coincide with the profile of the table  
   cover.  
 



 

 
 
 
 
 
 
 
 



E19 Teacher demonstration 
 
Tub as above, x 1 Take a model consisting of a clear cylinder open at both ends 
Apparatus as  with rods at 2 different heights, and in perpendicular planes, 
described, x 1  passing diametrically through it. Submerge and withdraw.  
   Display the resulting helicoid, tracing a helix on the cylinder. 
 

 
 
 
Helicoid model, x 1 Point out this is one of the ruled surfaces, and one of the special   
   ones which glides on itself. Point out that it is in fact the only 
   ruled surface which is minimal. 
 



 
 
 
Model corkscrew Exhibit.  
staircase, x 1 
 
 



 
 
   If you’re lucky enough to have access to a real corkscrew   
   staircase, use it.    
   Ask the children to recall running up a corkscrew staircase to 
   the top of a tower. Keeping to the centres of the steps, the  
   gradient was constant. What was it best to do when they got 
   tired: run in towards the centre or out towards the wall? 
Acetate as below 
 
 
   Display the acetate showing an aerial view of a child and two 
   friends climbing a spiral staircase. ‘Blue’ keeps to the outer 
   edge, walking a long way but following an easy gradient; ‘Red’ 
   keeps to the inner edge, a shorter but steeper way. ‘Green’  
   generally keeps to the middle. The slope eases when s/he veers 
   to the right, increases when s/he veers to the left. Ask the  
   children to imagine that the steps are infinitesimally small so 
   that the three are walking on a smooth surface. NE-SW the  
   surface has a convex bend; NW-SE, an equal concave bend. 
   Point out this is characteristic of all minimal surfaces: 
   At every point there are two, perpendicular directions in which 
   the curvature is greatest; in these two directions the surface  
   bends equally but opposite ways. (The plane is a limiting case 
   in which there are no bends in any direction.)  
 



 
 
   E20 Teacher demonstration 
 
Acetate 
Corresponding model, x 1 
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Your green self and your blue and red friends are climbing a spiral staircase which 
ascends anticlockwise. The arrows show directions of climb. The thumbnail transects 
show the gradients experienced. 



 
 

Offer the children the following intuitive way of seeing why 
the helicoid must be a minimal surface. 
 
A helix is a straight line wrapped around a cylinder. It is a 3-
dimensional curve, a space curve. 
 
Because a straight line is the shortest distance between two 
points in the plane, a helix is the shortest distance between two 
points on the cylinder.  



 

 
 
 
Here  becomes a helix of one turn on a thin cylinder;  a 
helix of one turn on a fatter, concentric cylinder; a helix of 
one turn on a fatter cylinder still; and so on. 
 
Imagine that each helix is not a space curve but a thin ribbon 
and that each ribbon is stitched along its edges to its neighbours 
on either side. 
 
Now let the ribbons become infinitesimally thin, and their 
number correspondingly large, and you have a smooth surface, 
a helicoid. 
 
Since each helix follows the shortest route between its ends, 
each ribbon shows the surface of least area between its edges, 
and all the ribbons together the surface of least area between 
the innermost edge and the outermost edge.  
 
E21  Teacher demonstration 

Base + 8    
clear plastic  Ask the children to cast their minds back over all the surfaces t 
plates, 4 of one they’ve seen (E14 – E18) and visualise an infinitesimal part. 
type, 4 of another Ask for 2 volunteers to assemble the corresponding model. 
(B25), x 1 
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    Ask the children how we know that the alternate segments 
    Are straight, even though their length is infinitesimal. 
    [If the surface is continuous, there must be a point between an 

   ‘up’ curve and a ‘down’ curve where the surface is level.] 
     
    E22  Pupil experiment 
 
    Repeat E20 by performing the ‘saddle dance’: with your head 
    as the point and your arms as the cross-section of the surface, 

   rotate through a whole turn. The children repeat. 
    
 
   E23  Teacher demonstration 
 
Soap solution,  Blow a bubble.  
Straw, x 1, 
Lenart sphere, x 1 Point out on the sphere that the principal curvatures go the  
   same way, not opposite ways. Point out that, unlike in the other 
   soap film experiments, there’s no boundary and there’s a  
   positive pressure difference across the surface. The soap film 
   represents the smallest possible surface area for that particular 
   pressure difference.      
        


