Scaling equilateral triangles

Work in terms of the area of a single set square triangle, call it u, so that the area of the equilateral triangle is $2 u$.

The area of each new triangle goes as the square of the side length, s, so the new area is $2 u\left(\frac{s}{2}\right)^{2}=\frac{s^{2}}{2} u$.

What we want is a whole number of set square triangles, so we require s^{2} to be even.

Let's see which of the cases I listed qualify.

1. s is made of 2 s . No problem.
2. s is made of 2 s and 1 s , making up an odd number. Problem. If s is odd, so is s^{2}.
3. s is made of an even number of $\sqrt{3} \mathrm{~s}$, say $2 a$, so
$s=2 a \sqrt{3}$.
$s^{2}=12 a^{2}$.
No problem.
4. s is made of an odd number of $\sqrt{3} \mathrm{~s}$, say $2 a+1$, so
$s=(2 a+1) \sqrt{3}$.
$s^{2}=3\left(4 a^{2}+4 a+1\right)=12 a(a+1)+3$.
Problem.
5. s is made of some whole number, n, plus some multiple, k, of $\sqrt{3}$.
$s=n+\sqrt{3} \mathrm{k}$.
$s^{2}=(n+\sqrt{3} k)^{2}=\left(n^{2}+3 k^{2}\right)+2 n k \sqrt{3}$.
Problem: no multiple of a surd is a whole number.
