Polygon ring stars

This is a polygon ring star, a regular *p*-gon at the centre with congruent isosceles triangles on its sides.

We choose φ so that it is the interior angle of a regular *n*-gon.

In the example below, n = 5, p = 4.

We know $\varphi = \frac{(n-2)\pi}{n}$ but we'll leave it as φ while we find out how θ depends on it.

We'll work our way round a star using Seymour Papert's Total Turtle Trip Theorem. This states that, by the time the turtle is back facing its original direction, it has rotated 2π .

(Note that we can derive the φ formula itself using the Total Turtle Trip Theorem.)

$$p(-\pi + \varphi + \pi) - p\theta = 2\pi,$$

$$\theta = \frac{p\varphi - 2\pi}{n}.$$

Substituting for φ and simplifying leads to: $\varphi = \frac{[np-2(n+p)]\pi}{2}$

$$\theta = \frac{[np-2(n+p)]n}{np}$$

Alternatively we can find θ from the figure below.

The interesting thing about our expression for θ is that it is symmetrical in *n* and *p*. This means that θ for a ring of *a b*-gons is the same as for a ring of *b a*-gons. If the polygons have unit edge, the star point triangles are congruent:

What is the range of *n* values possible for a given *p*?

From our formula, $np \ge 2(n + p)$. Rearranging, $n \ge \frac{2p}{p-2}$. If the *n*-gons are not to overlap, $\theta + 2\varphi \le 2\pi$. Substituting for θ and φ gives: $np \le 2(n + 3p)$. Rearranging, $n \leq \frac{6p}{p-2}$.

Putting those inequalities together, we have:

 $\frac{2p}{p-2} \le n \le \frac{6p}{p-2}.$

What is interesting here is that, at either end of the range for a particular *p* value, if we have equality, that is $n = \frac{2p}{p-2}$ or $\frac{6p}{p-2}$, the figure is often part of a tiling or some other special case. Intermediate values may also give tilings as the table below makes clear.

p	п	θ	Special case
4	4	0	The tiling 4.4.4.4
	12	$\pi/3$	The tiling 3.4.3.12/3.12.12
5	4	$\pi/10$	
	10	$2\pi/5$	The 10-gons share edges
6	3	0	The tiling 3.3.3.3.3.3
	6	$\pi/3$	The tiling 3.6.3.6
			This particular polygon ring star is
			A star polygon.*
	9	$4\pi/9$	The 9-gons share edges
7	3	$\pi/21$	
	8	$13\pi/28$	
8	3	$\pi/12$	
	8	$\pi/2$	Parts of the tiling 4.8.8 'chained'

* The difference in general between a polygon ring star and a star polygon is that the sides of the point triangles in the latter are continuations of the sides of the central polygon:

