## Polygon ring stars

This is a polygon ring star, a regular $p$-gon at the centre with congruent isosceles triangles on its sides.

We choose $\varphi$ so that it is the interior angle of a regular $n$-gon.

In the example below, $n=5, p=4$.


The turtle turns $-(\pi-\varphi) p$ times, $(\pi-\theta) p$ times, so we have:
$p(-\pi+\varphi+\pi)-p \theta=2 \pi$,
$\theta=\frac{p \varphi-2 \pi}{p}$.
Substituting for $\varphi$ and simplifying leads to:
$\theta=\frac{[n p-2(n+p)] \pi}{n p}$.
Alternatively we can find $\theta$ from the figure below.


We know $\varphi=\frac{(n-2) \pi}{n}$ but we'll leave it as $\varphi$ while we find out how $\theta$ depends on it.

We'll work our way round a star using Seymour Papert's Total Turtle Trip Theorem. This states that, by the time the turtle is back facing its original direction, it has rotated $2 \pi$.
(Note that we can derive the $\varphi$ formula itself using the Total Turtle Trip Theorem.)



The interesting thing about our expression for $\theta$ is that it is symmetrical in $n$ and $p$.
This means that $\theta$ for a ring of $a b$-gons is the same as for a ring of $b a$-gons. If the polygons have unit edge, the star point triangles are congruent:


What is the range of $n$ values possible for a given $p$ ?
From our formula, $n p \geq 2(n+p)$. Rearranging, $n \geq \frac{2 p}{p-2}$.
If the $n$-gons are not to overlap,
$\theta+2 \varphi \leq 2 \pi$. Substituting for $\theta$ and $\varphi$ gives:
$n p \leq 2(n+3 p)$.

Rearranging, $n \leq \frac{6 p}{p-2}$.
Putting those inequalities together, we have:
$\frac{2 p}{p-2} \leq n \leq \frac{6 p}{p-2}$.
What is interesting here is that, at either end of the range for a particular $p$ value, if we have equality, that is $n=\frac{2 p}{p-2}$ or $\frac{6 p}{p-2}$, the figure is often part of a tiling or some other special case. Intermediate values may also give tilings as the table below makes clear.

| $p$ | $n$ | $\theta$ | Special case |
| :--- | :--- | :---: | :--- |
| 4 | 4 | 0 | The tiling 4.4.4.4 |
|  | 12 | $\pi / 3$ | The tiling 3.4.3.12/3.12.12 |
| 5 | 4 | $\pi / 10$ |  |
|  | 10 | $2 \pi / 5$ | The 10-gons share edges |
| 6 | 3 | 0 | The tiling 3.3.3.3.3.3 |
|  | 6 | $\pi / 3$ | The tiling 3.6.3.6 <br> This particular polygon ring star is <br> A star polygon.* |
|  | 9 | $4 \pi / 9$ | The 9-gons share edges |
| 7 | 3 | $\pi / 21$ |  |
|  | 8 | $13 \pi / 28$ |  |
| 8 | 3 | $\pi / 12$ |  |
|  | 8 | $\pi / 2$ | Parts of the tiling 4.8.8 'chained' |

* The difference in general between a polygon ring star and a star polygon is that the sides of the point triangles in the latter are continuations of the sides of the central polygon:


