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       Symmetries of the mystic rose  
 
The individual pictures for the students are available for projection as .pdfs, accessed at: 

www.magicmathworks.org. Go to ‘Masterclasses’, ‘Mystic rose’, ‘Senior’. The files are 

‘Image 1’, ‘ Image 2’, ‘Image 3’, etc. The numbers below correspond to these. 

 

Suggested tasks for each figure and teachers’ notes 

 
‘Mystic rose’ is the name given to a regular polygon together with all its diagonals. Each of 

the dozen or so pictures brings out a different property of the figure. Some properties jump 

out at you; others are less obvious. Study the colours and the labels for clues. Equal lengths, 

equal angles, regular polygons, triangles isosceles and scalene, ... all these are to be found 

here in abundance. We take advantage of the fact that, with software packages like 

GeoGebra, there is a regular polygon tool the students can use to tackle these tasks. This 

provides in effect a virtual, circular geoboard. In every case the students may spot features I 

haven’t noticed, and should be encouraged to pursue their observations. 

 

(a) Level: Advanced KS3/KS4 

 

(′180°′ can be substituted for ′𝜋′ throughout.) 

 

The first task in each case is to describe the figure as if to a friend over the phone so clearly 

and unambiguously that they could draw it. This requires you to answer the question, 

sometimes asked explicitly below: How has the figure been constructed? 

 

1. The mystic rose is the regular n-gon together with all its diagonals. 

It has the full symmetry of the regular n-gon: n symmetry axes and rotation symmetry of 

order n. [See notes mystic rose 1 following.]  

 

2. What can you say about all the diagonals from a chosen vertex? 

 

  
 

Because of the rose’s rotation symmetry, all angles between sides or diagonals within the 

rose are multiples of this angle, 𝜃 = 
𝜋

𝑛
. [See notes mystic rose 2 following.] 

 

3. If the circumcircle of the polygon has unit diameter, the graph shows that the lengths of 

those diagonals follow the sequence  sin 𝜃, sin 2𝜃, sin 3𝜃, … .  

 

They’re the same angle apart. This follows from the 

following extension of the ‘same segment’ theorem. In 

the figure, the triangle has been rotated about the circle 

centre. The chord maintains its length and the angle 

subtended remains the same. If a whole series of equal 

chords are run together - as they are in a regular polygon 

- the angles they subtend at a point on the circumference 

- in particular another polygon vertex - are therefore 

equal. 

 

http://www.magicmathworks.org/
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To see why this is so, build isosceles triangles on the diagonals with their apices at the 

centre, and do the trigonometry. We see here that the length of the third diagonal is 

2 ×
1

2
sin 3𝜃 = sin 3𝜃. 

 

 
 

  

4. Triangles in the same shade of blue are congruent.  

 

Notice how a triangle has been swung round a vertex of the small polygon to complete a 

bigger triangle with one a shade paler inside the polygon. 

 

What can you say about that bigger triangle? 

We have transferred the angle 𝜃 from A to X (see figure below), thus producing a triangle 

with two equal angles. It is therefore isosceles. 

 

What can you say about all the bigger triangles? 

 Their angles are the same. Therefore they’re similar. 

 

How has the bigger polygon been constructed?  

It’s based on the first diagonal of the smaller one. 

 

Why are the outer vertices of the bigger triangles vertices of the bigger polygon?  

 

 The equal angles on the same base, AB, imply 

 that a circle passes through the outer points, 

 which therefore define a cyclic polygon. But we 

 can say more. Line segments like AX, AY are 

 separated by the same angle and thus form 

 diagonals of a regular polygon - see 2. Since  

         this angle is the same for the two polygons, 

         the larger one is similar to the original. 

 

We can iterate the process. The arrows in the left hand figure below show the successive 

diagonals on which the new polygons are based. The right hand figure below shows how we 

end up with nested similar triangles like those in blue. 
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When we come to consider 11., we shall find that the exterior vertices of a generation g 

polygon are interior vertices (diagonal intersections) of a generation (𝑔 + 1) polygon. 

 

 

5.  

 

 
 

We could have shown a similar diagram with squares or equilateral triangles. 

 

What can you say about the number of sides possible for a regular polygon traced in the 

diagonals of a regular 12-gon? 

 By symmetry it must be a factor of 12. 

 

We have shown one hexagon of each size but they are multiplied by symmetry. So there are 
12

6
= 2 central regular hexagons, 

12

4
 central squares, 

12

3
= 4 central triangles sharing vertices 

with the outer polygon. 

 

But internal regular polygons need not share a centre with the 12-gon. It contains, for 

example, 172 equilateral triangles, of which only 8 are central, these two multiplied by 4:  

 

 

 

 

The diagonals picked out by the dashed blue lines are 

like the blades in the iris diaphragm of a camera, closing 

up on smaller and smaller hexagons. The difference is 

that these blades close in discrete angular jumps of 𝜃.  
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To be sure that number is correct, we need to make the count in different ways. 

 

How many ways can you find?  

See notes mystic rose 5 following. 

 

For an easier example, find the number of squares in the order 12 rose. 
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How many distinct triangle shapes can you find? 

 In any triangle, the three angles are multiples of 𝜃 =
𝜋

𝑛
, so we have 𝑎𝜃 + 𝑏𝜃 + 𝑐𝜃 = 𝜋 = 𝑛𝜃, 

𝑎 + 𝑏 + 𝑐 = 𝑛. So the question becomes: How many ways are there to partition n into 

distinct sets of three numbers? 

For n = 9, for example, we have: 

 

1  1  7  2  2  5  3  3  3   

1  2  6  2  3  4 

1  3  5 

1  4  4      A total of 7. Try n = 12. 13 

 

6. All the diagonals of the mystic 11-gon are here. But what is the colour scheme? (The clue 

is in the vertex numbers.) 

 

 The colours indicate star polygons.  

 

A star polygon has the full symmetry of the convex regular polygon but its sides follow 

diagonals according to the following scheme. The difference between the convex polygon 

{11} and the star polygon {11,4} is that, for {11}, beginning at vertex 0, we just count on 1 

to the next vertex; for {11,4}, we count on 4 modulo 11. This brings us from 0 to: 4  8  1  5  9  

2  6  10  3  7  and back to 0 again. 

The path closes after 4 circuits. We can see this from the angle a vector would turn through 

along the path - see figure. We have 11 turns of  8𝜃, where 𝜃 =
𝜋

11
, that is, 11 × 8 ×

𝜋

11
= 8𝜋 

= 4 whole angles.]  

 

How big a turn does the vector make at each vertex of {11,k}? 2k𝜃 

 

There are 33, of 5 different sizes. 

All have diagonals lying in 

symmetry axes of the rose. 
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Draw the same diagram for the set of star 9-gons. What problem do you meet with {9,3}? 

{9,3} has to be made from three distinct triangles: it is a ‘degenerate’ case. 

For a valid star polygon, n and k must be coprime. 

 

Why does the complete set of star polygons for a regular n-gon correspond exactly to the set 

of diagonals? 

 Both represent all possible ways of joining the vertices of the polygon. 

 

How does the perimeter of a star polygon compare with that of its parent? 

Because the number of sides is the same for {n,k} and {n}, namely n, we only need compare 

the length of the diagonal forming a side of {n,k} with a side of {n}. We know from 3. that 

the ratio is sin 𝑘𝜃: sin 𝜃. 

 

How does the area of a star polygon compare with that of its parent? 

 

 
 

 

The white region is {7,3}. 

The ratio of areas of {7,3} to {7} is 

that of the dark green triangle to the 

whole green triangle. Because they 

have the same height, this is the 

ratio of their bases. You can confirm 

that this is  

 
cos 𝜃−sin 𝜃 tan(𝑘−1)𝜃

cos 𝜃
, 

 

where, in this case, k = 3, 𝜃 =
𝜋

7
. 

 

The formula also works for a 2k-

gon. Try {12,5} below. 
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A valid star polygon is a closed curve but not a simple closed curve because it crosses itself. 

Use the Geogebra ‘polygon’ tool to draw a star polygon.  

 

What rule does it appear to follow? 

The first edge is simply a line. With the second line, we have a defined angle and the tool 

colours the side of the figure where that angle is less than a straight angle, left say. It colours 

the part right of an imaginary line between the point it has reached and the first vertex. When 

it crosses itself, it switches the colour to its other side, always filling the part between its 

present position and what it has already drawn. The result is a ‘map-colouring’ of the figure. 

(See 13.) Here are two examples, {9,2} on the left, {10,3} on the right. 

 

 
 

7. The diagonals change colour at their midpoints. This is because, for each colour, we have 

chosen a vertex and drawn the half-edges and half-diagonals leading from it - see figure. 
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Draw your own one seventh of the rose which completes 

the whole rose by the 7-fold rotation. Make it a lot less 

tidy than mine: the elements don’t even need to be 

connected.  

 

How do you ensure that your set of elements is complete? 

Counting diagonals anticlockwise, say, from a vertex, you 

have to make sure that, for example, a third line segment 

along a second diagonal only occurs once - and so for 

every line segment - and that every line segment does 

occur. The only way to check is to rebuild the rose by 

rotating your seventh.  

 

 

How has the figure been constructed? 

 We begin with a regular 7-gon and its centre. The circles are drawn with polygon 

circumradii as diameters. 

Where two circles cut, there is a dot.  

 

What is special about the dots? 

 They’re vertices of regular 7-gons. And they lie at midpoints of diagonals of the outer 7-gon. 

We can think of the small 7-gons as the big 7-gon enlarged from a vertex by scale factor ½. 

 

The parallel lilac triangles are congruent.  

 

Show this.  

The sides of the triangles correspond to the same diagonals in equal regular 7-gons. 

 

Draw a figure of your own, with a different original polygon and a different coloured 

polygon. 

 

 

8. The set of polygons share an edge. The numbers of sides are shown. The tramlines reveal 

pairs of superimposed diagonals which match perfectly.  

 

What is the significance of the angle, 
𝜋

6
 (30°)? 

 The tramline pairs make multiples of this angle with the base.  

 

How are the numbers of sides related? 

 They are multiples of the side number of the smallest polygon. 

 

How can the perfect fit be explained? 
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For the 5 figures, the subdivisions run as follows. All represent the angle on the left, written 

below each of the 5 sets, divided by 2, 3, 4, ... 

 

90°     45°, 30°, 221

2
°, 18°  

60°     30°, 20°, 15°, 12°  

45°    221

2
°, 15°, 111

4
°  

36°    18°, 12°, 9°  

30°    15°, 10°, 71

2
°  

 

9. What do we see?  

 

10 10-gons, a series of enlargements from one vertex. The blue dots show interior vertices; 

the red dots do not fall on an intersection. On diagonal 𝑑3 and its symmetrical partner, 𝑑5, all 

dots mark interior vertices. 

 

10. What is the colour code on the left? 

 Points of the same colour lie at equal distances from the centre.  

 

How has the figure on the right been constructed? 

 The polygon has been broken at a vertex and straightened out; the diagonals have become 

semicircles. 

 

On the right we have lost the rotation symmetry but preserved a single mirror line. 

 

The colour code on the right matches that on the left. Because 7 is an odd number, it turns out 

that we can work out from a simple formula the number of diagonal intersections there 

should be and match that total on the two figures (35). [See mystic rose 10 following, where 

we also show how to count line segments.]  

(For even n > 4 there are intersection points through which more than two diagonals pass. 

These points do not survive a transformation into the straightened rose.) 

 

Draw a similarly transformed figure for the order 5 rose. 

 

11. Let’s call the points where polygon sides meet, exterior vertices; the points in which 

diagonals cut, interior vertices. On the left, one 12-gon shares a diagonal (dotted) with 

Like 11., this depends on 2. From a chosen 

vertex, the 24-gon has diagonals every 
𝜋

24
 ; the 

18-gon, every 
𝜋

18
; the 12-gon, every 

𝜋

12
; the 6-

gon, every 
𝜋

6
. Writing integers proportional to 

the highest common divisor of these angles, 
𝜋

72
, 

we have respectively, 3, 4, 6, 12, of which 12 is 

the lowest common multiple. Therefore the 

diagonals all line up every 12 ×
𝜋

72
=

𝜋

6
  - see 

figure.  
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another 12-gon. What we notice is that exterior vertices of the polygon on the right coincide 

with interior vertices of the polygon on the left. On the right, a 15-gon shares a diagonal with 

a 5-gon. Again, the exterior vertices of the 5-gon coincide with interior vertices of the 15-

gon.  

  

If a regular p-gon, P, shares a diagonal with a regular q-gon, Q, (AB in figure below) and 

the exterior vertices of Q within P coincide with interior vertices of P, what do we know 

about p and q? 

The key to this is figure 2. We’ll take the left hand figure of 11. first. Anchoring the two 

diagonals to each other means that, within P, all the diagonals of Q from A, and all the 

diagonals of Q from B, lie over diagonals of P - see figure. So, where Q diagonals meet in an 

exterior Q vertex, P diagonals meet in an interior P vertex.  

 

In the right hand figure of 11., a Q diagonal does not lie 

over every P diagonal, but over every third one. But this 

still means it still lies over a P diagonal, which is all we 

require. 

Thus the requirement is simply that p is a multiple of q. 

 

 

 

 

 

 

 

 

What can we say about the lengths of line segments between interior vertices? 

What can we say about the relation between the lengths of complete diagonals? 

 See notes mystic rose 11 following. 

 

12. How has the figure been constructed?  

The sides and diagonals have been extended from segments into lines. The circles join 

intersections at equal distance from the centre. 

 

Copy the figure, extending the lines outwards till there are no more intersections. Confirm 

that there are more diagonal intersections outside the polygon than inside.  

 

Given that, for odd n, no more than two diagonals pass through any intersection inside or 

outside the figure, show that this must be so for all odd n > 5. 

 

Any four vertices define a quadrilateral.  

 

Since two lines define a unique intersection, an intersection identified in a particular position 

with respect to the polygon is repeated exactly n times by symmetry. Such an intersection 

will be produced by one particular quadrilateral. We therefore only need consider the set of 

quadrilaterals distinct up to symmetry. 

 

 

For odd n these quadrilaterals can only be of the two kinds shown. 

(a) Where no sides are parallel, there is 1 interior cut, 2 exterior: a gain of 1. 
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(b) Where there is one pair of parallel sides, there is 1 interior cut, 1 exterior: no gain, no 

loss. 

 

 

 
 

Since both kinds of quadrilateral are present in any odd n-gon with more than 5 sides, there is 

always a net gain if n is odd and > 5. 

 

We can work out the numbers. See mystic rose 12 following. 

 

 

It’s interesting to see how this particular case works out. Here is the 7-gon. The vertices are 

numbered so that you can label diagonals and intersections if needed. The dotted lines are 

symmetry axes. Points showing intersections due to the sides and diagonals of the same 

quadrilateral have the same colour. Study how interior points map to exterior ones.  

The red and lilac dots, which are due to quadrilaterals of type (a), are responsible for the 

excess 2 × 7 = 14 points. Notice how the red and lilac dots, which lie off symmetry axes,  

swap circles. 
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If we take the right hand figure in 10., where the diagonals become semicircles, the 

equivalent figure for 12. would complete the circles to produce a mirror image below the line. 

But we see from what we’ve just found that this would give an incorrect count for 

intersections outside the polygon.  

 

13. These figures have been so coloured that regions sharing an edge have different colours. 

We only need two colours. What guarantees this? 
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Here are two approaches. 

 

A) Every node - like that circled in the left hand figure - has an even number of half-lines 

coming out of it. I can make a tour of the node blue-white-blue-white so I have used just two 

colours. If I cross the node, I emerge in a region of the same colour: like colours are 

‘vertically opposite’. What we have to show is that we shall never have to allocate whites and 

blues so that they end up in the wrong positions.  

 

On the left we can move down the symmetry axis AB following the rule that we keep the 

same colour when we cross a node and swap colours when we cross an edge. We then reflect 

what we’ve coloured in the symmetry axis CD. We’ve missed the triangle p but, by rotating 

E’F’B to EFC, we see that we can give that the colour blue and that this colouring is 

consistent with the rest. Confirm that this scheme is possible for some other odd value of  

n. 

 

On the right, in a similar way, we can consistently colour the top and bottom 1/8s of the 

polygon. If we reflect what we’ve completed in the green symmetry axis, we find we can 

simply swap blue for white and obtain a consistent colouring. This scheme will be possible 

for all even-sided regular polygons. Try n = 10. 

 

B) This second approach depends only on the rotation symmetry of the rose and we do not 

need to distinguish roses of odd from roses of even order. But it depends on the same 

properties of an ‘even’ node. We proceed as follows. 

 

1. We move from the centre and outwards, drawing concentric circles. Every time we meet 

an intersection point, we draw a black dotted circle. When those are complete, we insert red 

circles between them. 

2. We start at an outer region and colour it blue. 

3. We move in along a radius. If we cross an intersection point, we do not change colour; if 

we cross an edge, we do. We thus end up with a radius along which each region has a colour. 

4. From every one of those regions we follow a red circle round the polygon. We shall not 

meet an edge, since those lie on dotted black circles, but we shall cross edges, upon which we 

must change colour.  

 

We must first establish a property common to odd and even roses. 
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On the left we have an even-sided rose; on the right, an odd-sided one. 

 

Whatever the number of regions the red line on the left passes through within the part shaded, 

the total is multiplied by the number of sides. Since this number is even, the grand total must 

be even. 

 

Within the part shaded on the right, the symmetry axis shows that we have a central region, 

flanked by 2s regions and 2 ½-regions, that is [1 + 2𝑠 + 2 (
1

2
)] = 2(𝑠 + 1) regions, an even 

number. Therefore, although we must multiply by an odd number to obtain the grand total, 

we are multiplying an even number so, again, the result is even. 

 

We are therefore guaranteed a consistent sequence of alternating colours along each red 

circle. Since the full set of red circles pass through all regions of the rose - more than once in 

many cases - we shall have allocated a colour to every region, and done so consistently. 

 

                
 

In the right hand figure for 13., the total area of the blue regions equals the total area of the 

white regions. Prove this. 
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14. From left to right we zoom into a rose. Can we identify the whole from a part? On the left 

we see lines which look as if they’re symmetry axes radiating from a centre below at angles 

that look like 30°, clearly suggesting a 12-gon. In the middle, it’s again fairly clear, focusing 

on the blue triangles, that a rotation of 30° is involved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the right we must fall back on 2., where we noted that every angle is a multiple of  
𝜋

𝑛
 . 

The straight angle on the right is made of three equal angles, of 60° therefore. We also 

recognise the right angle in the lower triangle. Moving out from those angles, we deduce the 

30° bottom left, and estimate first the 75° then the 45° above. The angles of the lower 

triangle have greatest common divisor 30°, suggesting that n = 6. But, for the upper triangle, 

we see that the angles stand in the ratio 3:4:5, suggesting that n is not 1 + 2 + 3 but 2 + 4 +
6 = 3 + 4 + 5 = 12. 
 

(b) Level: KS5 

 

Mystic rose 1: The rose symmetry 

 

It belongs to the symmetry group 𝐷𝑛. 

 

Mystic rose 2: Navigating the mystic rose 

 

The rotation symmetry of the mystic rose reduces the calculation of angles to arithmetic with 

integers. 

 

This harks back to the previous item. 1/8 of the 

figure maps to an adjacent 1/8 so that what was blue 

becomes white and vice versa. Thus, in two adjacent 

1/8s, totalling 1/4 of the whole, the blue and white 

areas are equal. Multiplying up by 4, the same 

proportion is true for the whole octagon. 

A similar argument can be made for any regular 

polygon with an even number of sides.  
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We shall code a diagonal/side with two numbers. The first is the vertex label, v ; the second 

gives its position among the diagonals, ordered anticlockwise from vo. (Because a 

side/diagonal has two ends, you may like to confirm that an alternative code to ab is (𝑎 +
𝑏 + 1)(𝑛 − 𝑏 − 2), mod n.) 

 

Every angle between diagonals/sides is a multiple of 
𝜋

𝑛
. By always measuring angles in the 

same sense, anticlockwise say, we can work out the angle between any pair of diagonals from 

their codes. 

 

 
 

 

 

 

From the figure we see that unit difference in the first digits represents an angle of size 
2𝜋

𝑛
; 

unit difference in the second digits represents an angle of size 
𝜋

𝑛
 . Say we require the angle 

between 32 and 54, which we shall show with an arrow indicating the anticlockwise sense.  
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Using 
𝜋

𝑛
 as our unit, we have   

             32 → 42 = (4 − 3) × 2 = +2. 
             42 → 52 = (5 − 4) × 2 = +2. 
             52 → 54 = (4 − 2) × 1 = +2. 
Therefore: 

             32 → 54 =                             +6, 

an angle of 
3𝜋

5
 therefore. 

 

Mystic rose 5: Counting equilateral triangles in the order 12 rose 

 

In making any count, we must avoid the dangers of, on the one hand, omitting examples, on 

the other, double-counting. It is therefore advisable to make the count in more than one way 

as a check. We shall use two. 

 

1. We treat our iris blade as a pole with flags hanging from it - our equilateral triangles - and 

sweep it round a chosen vertex. This gives us equilateral triangles with their bases in all 4 

possible orientations. There would be 12 but the symmetry of the triangle reduces these by a 

factor 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The triangles in the fourth case are shared by three distinct vertices. We must therefore divide 

that count by 3. Counting the triangles with their bases along the ‘poles’ we therefore have: 

1 + 3 + 6 +
13

3
. We must multiply this total by the order of rotation symmetry, 12, giving 

43

3
× 12 = 172. 
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2. A 2k-sided regular polygon has k symmetry axes which pass through opposite vertices, and 

k which pass through the midpoints of opposite edges, so here, 6 of each.  

 

Below left we have collected in blue  

half the triangles (4) which sit astride a  

vertex-vertex axis and in green half 

 the triangles which lie off to the  

right (3) and half which lie off to  

the left (a matching 3). 

So that’s 10 in total. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We must take those 10 + 4 = 14 and multiply by the order of rotation symmetry, 12: 

14 × 12 = 168 .  Finally we must add 4 for the triangles which share three vertices with the 

12-gon. So the grand total is 172. 

 

Mystic rose 10: for odd n: (a) How many interior vertices, i ? How many vertices in 

total, c ? (b) How many line segments (edges), e ? (c) How many regions, f ? 

 

We must assume the following lemma: If n is odd, just two lines cross in every interior vertex 

and every exterior vertex. 

 

(a) This makes our first count easier since every particular intersection marks a crossing of 

two particular diagonals, and each diagonal is defined by two polygon vertices - see left hand 

figure. Therefore the number of intersections, i, is the number of choices of four vertices 

from the polygon’s 2𝑘 + 1, 

 

𝑖 = (
2𝑘 + 1

4
) =

(2𝑘+1)(2𝑘)(2𝑘−1)(2𝑘−2)

4!
=

(2𝑘+1)(2𝑘−1)𝑘(𝑘−1)

6
. 

 

Hence the ‘35’ for our 7-gon: 
7×5×3×2

6
. 

Below right we have collected in lilac 

half the triangles which sit astride an 

edge-edge axis (4). 
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For the total number of vertices, c, we must add in the 𝑣 = 2𝑘 + 1 exterior vertices, so 

 

𝒄 = 𝒊 + 𝒗 = 
(2𝑘+1)(2𝑘3−3𝑘2+𝑘+6)

6
. 

 

 
 

(b) 2𝑘 half-edges come out of each of the 2𝑘 + 1 exterior vertices, so the number of 

complete edges from that source, 𝑒𝑣 = 𝑘(2𝑘 + 1).  

 

4 half-edges come out of each interior vertex, so the number of complete edges from that 

source,Type equation here. 𝑒𝑖 = 2𝑖. 
 

So 𝒆 = 𝒆𝒗 + 𝒆𝒊 =
𝑘(2𝑘+1)(2𝑘2−3𝑘+4)

3
. 

 

 

(d) To use the Euler formula, we need to exclude the exterior region, so we have: 

 

𝒇 = 𝒆 − 𝒄 + 𝟏  

= (𝑒𝑣 + 𝑒𝑖) − (𝑣 + 𝑖) + 1    
= 𝑒𝑣 − 𝑣 + 𝑖 + 1   

=
𝑘(2𝑘−1)(2𝑘2−𝑘+5)

6
 . 

 

 

Mystic rose 11: (a) Relations between the lengths of complete diagonals, (b) The lengths 

of segments between interior vertices 

 

Part 1 

 

The topics (a) and (b) are related by a visualisation due to Anne Fontaine and Susan Hurley, 

which takes us back to our figure of overlapping similar polygons. 
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We take a 9-gon as our example. We do what we did before: we fit it to a similar figure so 

that a diagonal of the smaller coincides with a side of the larger.  

 

We work with absolute lengths. For the smaller polygon, 𝑑𝑘 is the length of the 𝑘𝑡ℎ diagonal, 

counting anticlockwise, say, from a vertex, where 𝑑0 is the length of a side. For the larger, we 

use capitals so that the corresponding lengths are 𝐷0, 𝐷1, 𝐷2, … We match 𝐷0 to 𝑑3. 

 

 
 

Note that, by symmetry, 𝑑4 = 𝑑3, 𝑑5 = 𝑑2, 𝑑6 = 𝑑1. 

 

By parallel projection we see that: By scaling, we also have:  So that: 

 

𝐷0 = 𝑑3 (the given condition), 𝐷0 = 𝑑0
𝑑3

𝑑0
,     

𝐷1 = 𝑑2 + 𝑑3,    𝐷1 = 𝑑1
𝑑3

𝑑0
,  𝑑1𝑑3 = 𝑑0(𝑑2 + 𝑑3), 

𝐷2 = 𝑑1 + 𝑑2 + 𝑑3,   𝐷2 = 𝑑2
𝑑3

𝑑0
,  𝑑2𝑑3 = 𝑑0(𝑑1 + 𝑑2 + 𝑑3), 

𝐷3 = 𝑑0 + 𝑑1 + 𝑑2 + 𝑑3 .  𝐷3 = 𝑑3
𝑑3

𝑑0
.  𝑑3𝑑3 = 𝑑0(𝑑0 + 𝑑1 + 𝑑2 + 𝑑3). 

 

 In order to generalise the result we need to distinguish all the diagonals from a given vertex, 

𝑑0 to 𝑑6 in this case. The last three equations then look like this: 

 

𝑑1𝑑3 = 𝑑0(𝑑2 + 𝑑4), 

𝑑2𝑑3 = 𝑑0(𝑑1 + 𝑑3 + 𝑑5),  
𝑑3𝑑3 = 𝑑0(𝑑0 + 𝑑2 + 𝑑4 + 𝑑6). 

 

The features of significance are these: 

1. There is one more term in the bracket than the suffix of the first ‘d’. 

2. The terms in the bracket are centred on the second ‘d’.  

3. The suffices in the bracket go up in 2s. 

 

The general statement of the relation, Steinbach’s ‘diagonal product formula’, is this:  

Given a regular n-gon, if 𝑘 ≤ ⌊
𝑛−2

2
⌋, ℎ ≤ 𝑘, then 𝑑ℎ𝑑𝑘 = 𝑑0 ∑ 𝑑𝑘−ℎ+2𝑖

𝑖=ℎ
𝑖=0  . 

It can be shown by centring the polygon in a unit circumcircle on the origin of an Argand 

diagram and using the fact that the vertices are roots of unity. But we will show it by direct 

substitution in a trigonometric identity. 
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Substitution in the RHS of the identity yields the LHS, as required. 

 

We can derive the special case of the diagonal product formula where ℎ = 1, i.e. 

 𝑑1𝑑𝑘 = 𝑑0(𝑑𝑘−1 + 𝑑𝑘+1), by taking figure 4. In each case the ratio between the base and 

side of an isosceles triangle is 
𝑑1

𝑑0
, so we have:  

𝑑0 + 𝑑2 =
𝑑1

𝑑0
𝑑1, whence 𝑑1𝑑1 = 𝑑0(𝑑0 + 𝑑2), similarly 𝑑1𝑑2 = 𝑑0(𝑑1 + 𝑑3), 𝑑1𝑑3 =

𝑑0(𝑑2 + 𝑑4), ... 

 

Part 2 

 

What can we say about the points marking the divisions between the lengths marked in the 

three figures above? 

 

 
Through the small polygon, whose diagonals and sides parallel corresponding diagonals and 

sides in the larger one, we can identify congruent triangles mutually rotated by half a turn 

revealing parallels on the larger figure. In this way, or by identifying lengths and angles by 

Inscribing the n-gon in a circle of radius ½, we see 

from the figure that 𝑑𝑘 = sin(𝑘 + 1)𝜃, where 𝜃 =
𝜋

𝑛
. 

(Compare 3.) 

 

The sum on the right of the formula is therefore a sum 

of sines, whose arguments run in arithmetic 

progression, from 𝑑𝑘−ℎ = sin(𝑘 − ℎ + 1)𝜃  

to 𝑑𝑘+ℎ = sin(𝑘 + ℎ + 1)𝜃, 

in steps of 2𝜃, ℎ + 1 terms in all. 

 

The identity we need is: 

 

∑ sin(𝜑 + 𝑖𝛼)𝑖=𝑛
𝑖=0 =

sin
(𝑛+1)𝛼

2
sin

2𝜑+𝑛𝛼

2

sin
𝛼

2

. 

  

The substitutions: 𝑛 = ℎ, 𝜑 = (𝑘 − ℎ + 1)𝜃, 𝛼 = 2𝜃, 

yield: 
sin(ℎ+1)𝜃 sin(𝑘+1)𝜃

sin 𝜃
 = 

𝑑ℎ𝑑𝑘

𝑑0
. 
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other means, we find that the points in question are intersections of diagonals on the main 

figure, that is, interior vertices. 

 

The distances will not generally be those between adjacent vertices. But we can always write 

distances between adjacent vertices as differences of these lengths. 

 

Part 3 

 

If we divorce the big polygon from its small partner, we must specify the latter when 

labelling lengths. In the above example, in place of ′𝑑𝑘′ we could write ′𝑑3𝑘′  to acknowledge 

this, but in the next figure we shall just write the suffix for shortness, ‘3k’. The new figure is 

a regular heptagon with the polygons set so that 𝐷0 = 𝑑2. A difference of two lengths will 

then appear as ‘2𝑘 − 2𝑙’. (If we change the position of the auxiliary polygon so that it 

becomes a different size, we shall have a different first digit, and all the lengths will receive 

different codes.)  

 

By parallel projection and the use of symmetry, we find there are just six distinct lengths. 

 

 
 

Note that 20, 21, 22 code the diagonal lengths of the auxiliary polygon. In these sums we see 

the same pattern we observed in the case of the 9-gon. 

 

(If we set the auxiliary polygon so that 𝐷0 = 𝑑1, we find: 

 

𝐷0 =             11,  
𝐷1 =   10             + 12,  
𝐷2 =             11   + 12.  
 

But the former pattern can be restored by creating signed sums as we did for the individual 

segment lengths above.) 

 

Part 4 

 

Peter Steinbach found that what is true of all diagonals of a given regular n-gon is that, given 

a side length 1, their ratios constitute an extension field to the rational numbers, that is to say, 

all binary operations on linear combinations of the ratios yield a linear combination also. 

Particularly interesting is the case where n = 2𝑘 + 1 is prime. There the k distinct ratios form 

the basis for the extension field. 

 

 

The three diagonal lengths are:  

 

𝐷0 =                      22,  
𝐷1 =            21 + 22,  
𝐷2 = 20 + 21 + 22.  
 



 23 

This fact is only well known in the case of the regular pentagon, where the basis has two 

elements, 1 and the golden ratio. But, for the regular heptagon, giving the ratios in order as  

1, 𝜌, 𝜎, we can use the diagonal product formula to confirm these relations: 

 

𝜌2 = 1 + 𝜎, 𝜌𝜎 = 𝜌 + 𝜎, 𝜎2 = 1 + 𝜌 + 𝜎. 

 

From those in turn, we an derive these expressions: 

 
1

𝜎
= 𝜎 − 𝜌,

1

𝜌
+

1

𝜎
= 1,

1

𝜌
= 𝜌 − 𝜎 + 1,

𝜎

𝜌
= 𝜎 − 1,

𝜌

𝜎
= 𝜌 − 1. 

 

Part 5 

 

Because the two overlapping polygons are similar: 

(1) Any ‘d’ ratio can be written as a ‘D’ ratio. 

(2) Any ‘d’ value can be written as a ‘D’ value by multiplication by the scale factor, here 
𝑑0

𝑑2
=

𝐷0

𝐷2
 . 

Thus, for example, 22 = 𝑑2 =
𝑑0𝐷2

𝑑2
=

𝐷0𝐷2

𝐷2
= 𝐷0. 

In this way we can write all the individual segment lengths for the 7-gon in terms of 𝐷0 by 

using the ratios found above. This gives us their relative lengths, which are as shown in this 

table. Below right we show how the diagonals are made up from these. 

 

1     f 𝑎 + 𝑏 + 𝑐 = 𝑐 + 𝑑 + 𝑒 = 1 

2𝜌 − 𝜎 − 1    e 2(𝑎 + 𝑏) + 𝑐                  = 𝜌 

2 − 𝜌     c 2(𝑐 + 𝑑 + 𝑒) + 𝑏          = 𝜎 

𝜎 − 2     b 

𝜎 − 𝜌   1/𝜎  d 

𝜌 − 𝜎 + 1  1/𝜌  a  

 

 

We note that the length of the first segment of a diagonal is the reciprocal of the diagonal’s 

length. This is true for the general n-gon as we now show. 

 

 

 

}1/𝜎 

We take the odd case but a similar 

figure could be drawn for even n. 

 

Similar right triangles have been 

given the same colour. (Note that 

the large and small green triangles 

have the opposite orientation.) 

 

The trigonometry shows that 
|𝑂𝐴| × |𝑂𝐵| = 1. 
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This has a geometrical consequence. Let the diagonal from T cut a diagonal from an adjacent 

vertex O in its first intersection, A. Let that second diagonal terminate at polygon vertex B. 

We have just shown that |𝑂𝐴| × |𝑂𝐵| = |𝑂𝑇|2. By the converse of the tangent/secant 

theorem, we can draw a circle which passes through A, B and is tangent to the polygon side 

OT at T. We thus obtain a family of such circles, 𝑐1, 𝑐2, 𝑐3, …, whose centres are collinear. 

 

 
 

 

Mystic rose 12: Counting intersections 

 

Let 𝑖𝑛 be the number of interior intersections, 𝑜𝑛 the number of exterior intersections. 

 

Let 𝑛 = 2𝑘 + 1, 𝑘 > 2. 

Four vertices, numbered in order (anticlockwise, say) 0, 1, 2, 3, define the two quadrilaterals 

02, 13, which in turn define an intersection, 02/13. Therefore 𝑖𝑛 = (
2𝑘 + 1

4
) , the number of 

ways of choosing 4 from the number of vertices of the polygon. This is also the total number 

of quadrilaterals. 
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Type (2) quadrilaterals are isosceles trapezia. Their number up to symmetry is the number of 

pairs of parallel diagonals in the polygon, (
𝑘
2

). The total number, 𝑞2, is therefore 

 (2𝑘 + 1) (
𝑘
2

). 

𝑜𝑛 exceeds 𝑖𝑛 by the number of type (1) quadrilaterals, 𝑞1, which is 𝑖𝑛 − 𝑞2. 

Therefore 𝑜𝑛 = 2𝑖𝑛 − 𝑞2 = 2 (
2𝑘 + 1

4
) − (2𝑘 + 1) (

𝑘
2

) =
(4𝑘−5)(𝑘−1)𝑘(2𝑘+1)

6
. 

 

(One of (𝑘 − 1), 𝑘 divides by 2. If neither divides by 3, then (𝑘 − 2), (𝑘 + 1) must both 

divide by 3. In that case (4𝑘 − 5),  which = 3(𝑘 − 2) + (𝑘 + 1), divides by 3. In all cases, 

therefore, the numerator divides by 6, confirming that 𝑜𝑛 is an integer.) 

  

We note therefore that the excess, 𝑒𝑛, demonstrated in part (a) = 𝑜𝑛 − 𝑖𝑛 =
(𝑘−2)(𝑘−1)𝑘(2𝑘+1)

3
. 

(From the three consecutive terms, we see that 3 divides the numerator, confirming that 𝑒𝑛 is 

an integer.) 

 

For reference, 𝑖𝑛 + 𝑜𝑛 = (𝑘 − 1)2𝑘(2𝑘 + 1); the total numbers of intersections including the 

polygon vertices = (2𝑘 + 1)(𝑘3 − 2𝑘2 + 𝑘 + 1). 
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