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      A junior masterclass on the mystic rose with GeoGebra 

 

Required: 

 

For 30 children working in pairs: 

 

• (15) laptops, loaded with Geogebra Geometry and the .ggb files for the session, 

labelled Image 1, Image 2, Image 3, ..., or, in some case, Image 3.1, Image 3.2, ... 

where additional files are needed. 

 

For the instructor: 

 

• one laptop loaded as above, but also with .pdf files for display only,  

• a second laptop on which the instructor can monitor the detailed session plan. 

 

All the computers networked and connected to a digital projector for display on a screen, 

the network being set up so that the work of a particular pair of children can be projected 

and if necessary corrected by the instructor. 

 

Session structure: 

 

There are a dozen ‘images’. Each part of the session begins with the instructor displaying for 

discussion the image on which the children are to work for the next 10 minutes or so, using 

their .ggb files. These are .pdf files labelled Image 1,  Image 2, Image 3, ..., or, in some 

cases, Image 3.2, Image 3.2, ... where additional, explanatory graphics are needed.  

 

Procedure for each Image: 

 

Start:  

 

• Open Geogebra 

• Drag and drop Image 1 into window 

 

End: 

 

• Export completed file to desktop 

 

 

Detailed session plan follows. 

 

End of session: create folder, label [Name]’s mystic rose, store all the files.  

 

 

N.B. The answers in blue are given on the teacher’s level. They do not show how the children 

are likely to respond. 
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     Image 1 

 

 

 

 

 

 

 

 

 

 

  

Image 1 .pdf projected. 

 

Can you describe what you’re seeing? You’re describing it to someone over the phone. Your 

description must be so clear that the person at the other end could draw it. 

 

Regular polygon. 12 sides. Every vertex joined to every other vertex so that polygon has all 

its diagonals. This means 11 lines come out of each vertex, 1 less than 12: two sides and 9 

diagonals. 

 

Bring up Image 1.1 .ggb file, (which has order 12 rose on the left, the right side blank). 

 

Choose a vertex. Starting at a side going out clockwise from that vertex, count round to a 

diagonal of your choice, the 3rd say. 

Choose Basic Tools: Move. Click on your diagonal. Choose a colour. 

Do the same for every 3rd diagonal round the rose. 

If you’ve done that correctly, you should have a design which could be turned to any of 12 

positions and you wouldn’t know it had been turned. We say the design has rotation 

symmetry, of order 12. 

 

The rose also has mirror symmetry. Colour a diagonal which crosses the centre. Choose 

Construct: Midpoint. Choose a pair of opposite sides for midpoints. Choose Basic Tools: 

Segment and join them. Colour it. You now have two symmetry axes. How many are there 

altogether? 

 

12, 1 for each of 6 pairs of parallel edges, 1 for each pair of opposite vertices. 

 

Choose Polygons: Regular polygon. Start it on the right. Choose 11 sides. Adjust it to fit 

page. 

What main differences would there be if you clicked on Basic Tools: Segment and drew all 

the diagonals to make a rose of order 11?  

 

No diagonals through centre.  

 

How can you draw a symmetry axis?  

 

Vertex to opposite midpoint. 

 

 

 



 3 

                    Image 2 

 

 

 

 

 

 

 

 

 

Image 2 .pdf projected. 

 

Describe what you see. 

 

A circle. A (9-sided) regular polygon sits with 1 vertex at the centre, 2 on the circumference. 

4 radii of the circle are drawn at equal angles. A side and 3 adjacent diagonals of the polygon 

lie in these. 

 

Bring up Image 2 .ggb file. 

 

Choose Basic Tools: Segment. Make the figure symmetrical about a vertical mirror line. 

Use Basic Tools: Segment to join the ends of the radii to begin a bigger polygon.  

Estimate how many sides you think it’ll have. 

 

The circle has twice the diameter of the circumcircle of the 9-gon, so 9 × 2 = 18. 
 

Choose Construct: Perpendicular bisector. Bisect bottom edge. Choose Construct: 

Perpendicular line. Put line on perpendicular bisector just drawn and move to circle centre. 

Click on  Construct: Perpendicular bisector, then Edit: Hide, then Edit: Move.   

 

This defines 9 sectors in lower half, so answer again: 9 × 2 =18. 

 

What is the angle of the sector? 

 

360° ÷ 18 = 20°. 
 

We could draw the rest of the radii by extending the existing radii across the centre as 

diameters. What if we’re not allowed to do that? 

 

We know we can make the correct angles in the 9-gon so we can use that as a template. 

 

Build 9-gons on the uppermost edges of the existing one, using Polygons: Regular polygon. 
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                   Image 3: seniors only                                                

 

       Image 4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 4 .pdf projected. 

 

What do you see? 

 

2 9-gons, one within the other. A 1st diagonal of the small is a side of the large. Two sets of 

diagonals of the small lie over diagonals of the large. Are triangles of the same shade 

congruent? 

 

Bring up blank page. 

 

We’re going to make a copy. How do you suggest we do it? 

 

Draw the small one. Use a 1st diagonal of the small as a side to make the large. 

 

Do so, using Polygons: Regular polygon. 

 

Triangles of the same shade are in fact congruent. Can you see how to move one onto its 

copy? 

 

Rotate about a vertex of the small 9-gon.  

 

Choose Polygons: Polygon. Go round one of the triangles inside the small 9-gon. 

Choose Transform: Rotate around point. Click on your triangle. Click on vertex. Choose 

140°. We’ll see later why that is the correct angle. 

 

Notice that the angle on the inside was carried round to the outside. Use Basic Tools: Point 

and put dots to show the two equal angles.  

 

Choose Polygons: Polygon. Go round the triangle formed from your new triangle and the 

one inside it. 

 

Because of the two equal angles what do you know about this new triangle? 
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It’s isosceles. 

 

Put dots all the way round the top vertex of the little 9-gon, which are all equal. We saw that 

from the Image 2 activities. 

 If you chose a different triangle to start with from your neighbour but the final isosceles 

triangle has the same base angle as your neighbour’s, what can you say about all the isosceles 

triangles we’ve made? 

 

They’re similar. 

 

Choose Transform: Translate by vector. Click on the big 9-gon and move it away to the 

right. Choose Transform: Translate by vector. Move the small 9-gon to its original position 

on top of the big 9-gon. Click on Basic Tools: Move. Click on one of the 9-gons, then on the 

paint box symbol, and reduce the colour density to zero so that it goes white. Do the same 

with the other. Using the Polygons: Polygon tool again, draw in all the isosceles triangles 

(there are 8), giving each a different colour. But then use Basic Tools: Circle with centre 

and click on the top 9-gon vertex each time to find which triangles fit the circle and are 

therefore the same size, and give triangles the same size the same colour.  

 

 
 

Now we must explain the 140°. 

 

Image 4.1 .pdf projected. 
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     Image 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 5 .pdf projected. What do you see? 

 

The same diagonal from each vertex is drawn but, proceeding clockwise, each new diagonal 

cuts off part of the previous one. Each diagonal is like the blade of an iris diaphragm on a 

camera. A mirror image would be an anticlockwise version. If we superimposed the two, we 

we would produce a smaller 12-gon centred on the first, whose vertices are the intersections 

of those diagonals. 

 

Bring up Image 5.1 .ggb file, (which has order 12 roses in the four quadrants, each with 

vertices numbered anticlockwise 0 to 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Take the top left 12-gon. 

 

Use Polygons:Regular polygon. Click on the intersection of 1st diagonals from adjacent 

vertices. Go anticlockwise till you reach the next such intersection. Choose ‘12’. 

 

How could you make a smaller 12-gon? 

 

Click on the intersections of 2nd diagonals from every 2nd vertex. 

 

... and a smaller one still? 

 

Click on the intersections of 3rd diagonals from every 3rd vertex. 
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Complete the sequence. 

 

Take the top right 12-gon. 

 

Instead of nested 12-gons which spiral round, we’ll see if we can pick out regular hexagons. 

We begin by locating single vertices of the hexagons. 

Choose Basic tools: Point.  

Mark a vertex 0 of the 12-gon.   

Mark an intersection of 2nd diagonals from vertices 0 and 1. 

Mark an intersection of 3rd diagonals from vertices 0 and 2. 

Mark an intersection of 4th diagonals from vertices 0 and 3. 

 

From each of those points, go 1/6 of a whole turn, 60°, anticlockwise and mark a second 

point. 

 

Using those point pairs as sides of your hexagons, use Polygons: Regular polygon to draw 

the sequence of hexagons. 

 

Had we started everything at vertex 1, we would have got a second set of hexagons. 

 

Take the bottom left 12-gon. 

 

You might be able to pick out squares just by sight. Which vertices does the biggest join? 

 

0-3-6-9 or 1-4-7-10 or 2-5-8-11. 

 

See if you can spot the right-angled corners. 

In addition to the centred squares, see if you can trace a square with a vertex at the centre of 

the 12-gon and another, slightly smaller one, off-centre altogether. 

 

Take the bottom right 12-gon. 

 

Try equilateral triangles. There are only 2 sizes of centred equilateral triangle, but there are 5 

off-centre. 

 

 

Bring up Image 5.2 .ggb file, (which has an order 10 rose top left, an order 9 rose top right, 

an order 8 rose bottom left, an order 7 rose bottom right). 
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Predict which regular polygons you can pick out in each case and try to draw them. 

 

Number of sides:  10: 10, 5 9: 9, 3  8: 8, 4  7: 7 

 

What is the rule?  

 

The small number must be a factor of the large. 

 

(You should find an off-centre equilateral triangle in the regular 9-gon.)  
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       Image 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 6 .pdf projected. 

 

This would be a rose of order 11, but the diagonals are coloured according to a scheme. 

Fix on one colour at a time. What rule do you think it follows? Discuss your ideas with a 

partner. What is the overall scheme into which your colour’s particular rule fits? 

 

The secret lies in the vertex numbers. For example, the lilac lines run in sequence  

0 - 4 - 8 - 1 - 5 - 9 - 2 - 6 - 10 - 3 - 7 - 0. We add 4 each time but modulo 11. The figure it 

draws is the star polygon {11,4}. The scheme comprises all the star polygons which can be 

drawn in the order 11 rose: {11,2}, {11,3}, {11,4}, {11,5}. 

 

Why is there not an {11,6}? 

 

This would be {11,5} drawn in the opposite sense (anticlockwise).  

 

What are the matches for {11,7}, {11,8}, {11,9}? 

 

{11,4}, {11,3}, {11,2} respectively. 

 

Starting at vertex 0, how many times does a star polygon go round the centre before it arrives 

back at its starting point? Fix on a particular example and see if your hypothesis stands up for 

the others. 

 

{11,2} goes round twice, {11,3} three times, etc.  

 

How many vertices do all the star polygons based on the order 11 rose have? Check a few 

cases. 

 

11, the same as the regular polygon itself. 

 

Ordinary regular polygons have an interior angle: the equilateral triangle 60°,  the square 90°, 
etc. But, if we imagine a vector drawing them as it moves along and turns at the vertices, we 

get the supplements of these angles: 120°, 90°, etc. We call these turning angles.  
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Bring up Image 6.1 .ggb file, (which has an order 12 rose with an inset key showing how to 

measure turning angle). 

 

Pick out the star polygon {12,5} in colour in the order 12 rose. Choose Measure: Angle. 

Measure the turning angle as shown.  

Multiply by 12 for the number of vertices. 

Divide by 5. 

Can you explain your answer? 

 

Since {12,5} goes 5 times round the centre, the vector makes 5 complete turns of 360°. Each 

turning angle must therefore be 
360°×5

12
, which gets us back to the angle we measured. The 

inverse sequence of operations - multiply by 5 and divide by 12 - is what we’ve just done. 
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     Image 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 7 .pdf projected. 

 

What do you see?  

 

Upper figure 

 

7 circles. A diameter of each is a radius of a bigger circle. The outer ends of the diameters are 

the vertices of a regular 7-gon, of which the bigger circle is therefore the circumcircle. The 

diagonals of the big 7-gon are drawn. Each half is a diagonal of a smaller 7-gon, of which a 

smaller circle is the circumradius. Alternatively we can think of the big figure as a small 

figure enlarged by scale factor 2 from one of the outer vertices. The small 7-gons are 

coloured. This reveals that they overlap in kites, of which a longer side is a side, a shorter 

side half a side, of a small 7-gon. 

 

Lower figures 

 

The two triangles are congruent. Likewise the two isosceles trapezia. How do we know? 

 

If we were to number the vertices of each 7-gon, we would see that the same vertices belong 

to each shape. 
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     Image 8 

 

 

 

 

 

 

 

 

 

 

 

 

Image 8 .pdf projected. 

 

What do you see? 

 

Regular 6-, 12-, 18-, 24-gons share an edge. Certain diagonal pairs can be traced right across 

the figure. 

 

So we must try to explain the tramlines. There is a clue in the figure. Trace diagonals from 

the bottom left vertex. Any ideas? 

 

There are two 12-gon diagonals for every one 6-gon diagonal. 

 

Bring up Image 8.1 .ggb . We’ll begin by writing above it the angle in degrees between 

adjacent diagonals for each shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Choose Media: Text. Click above the hexagon and write ‘180 ÷ 6 = 30′.  Do the same for 

each shape. 

 

Choose Transform: Translate by vector. Click on one of the coloured diagonals to the left 

and move it onto one to the right. Do this for several. Why is this always possible? 

 

We can always make up the 30° with multiples of the other angles: 

4 × 71

2
° = 3 × 10° = 2 × 15° = 30° . 
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                 Image 9 

 

  (top)            (bottom) 

 

 

 

 

 

 

 

 

 

 

 

 

Image 9 .pdf projected. 

 

What do you see at the top? 

 

2 10-gons, the vertices of the smaller one coincide with interior vertices of the larger. 

 

What do you see at the bottom? 

 

10 10-gons, a series of enlargements from one vertex. The blue dots show interior vertices; 

the red dots do not fall on an intersection. On two diagonals all dots mark interior vertices. 

 

So all the black dots in the top figure are like blue dots in the bottom figure. What is the 

difference between the two figures? 

 

In the top figure the small 10-gon shares 2 vertices with the large one; in the bottom figure it 

shares just 1. 

 

We’ll try to find out what’s special about the top figure. 

 

Bring up Image 9.1 .ggb .  

 

 

 

 

 

 

 

 

 

 

 

With Basic tools: Move  colour the bottom one of the two vertices shared by the two shapes 

red; colour the top one blue. Using Basic tools: Segment, join the red point to each vertex of 

the big shape. With the Basic Tools: Move tool colour the lines red. In the same way, make 

blue lines from the blue vertex to each vertex of the big shape. What do you find? 
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Every vertex of the small 10-gon inside the big 10-gon lies on both a red line and a blue line. 

So it is an interior vertex of the big 10-gon. 

 

Why do diagonals of the small 10-gon lie on top of diagonals of the big 10-gon? 

 

Because the angles between them are all equal and all the same and the two shapes start with 

a shared diagonal.  
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               Image 10 

 

                            (top)         (bottom) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 10 .pdf projected. 

 

The upper figure 

 

What do the colours code? 

 

We could draw circles, concentric with the centre, on which each set of coloured dots fall: 

they mark points at equal distances from the centre. 

 

Count the dots of each colour. What do you find? 

 

The numbers are multiples of 7. 

 

How do you explain this? 

 

Every dot is multiplied by 7 due to the order 7 rotation symmetry. If a dot lies off a symmetry 

axis, its number is further multiplied by 2 because of reflection symmetry. 

 

The lower figure 

 

What are the differences between the upper figure and the lower one? 

 

In the lower one the straight lines of the diagonals have been replaced by semicircles. 

But the polygon itself, which lies on a circle in the upper figure, has been broken at vertex 0 

and straightened out. The edge between vertices 0 and 6 has become the biggest semicircle. 

 

The points where the diagonals cross in the upper figure are the points where the semicircles 

cross in the lower one. 
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                Images 11, 12: seniors only 

 

                    Image 13 

 

 

 

 

 

 

 

 

 

 

 

 

Image 13 .pdf projected. 

 

Bring up Image 13 .ggb . Using Polygons: Polygon colour the regions in such a way that no 

two regions sharing an edge have the same colour. Use as few colours as possible - just two if 

possible! 
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               Image 14 

 

 

                            (top)                              (middle)   (bottom) 

 

 

 

 

 

 

 

 

 

 

 

Image 14  .pdf projected. 

 

What d’you think the three pictures show? 

 

Zooming into a rose in three stages. 

 

To find out which rose it is, the easiest picture to use is the top one. Why? 

 

There are lines which look as if they converge on the centre or on a vertex. We can measure 

the angle between lines which form the smallest angle and divide that angle into 180°. 

 

There are such lines in the middle picture. How could you check that they are the ones you 

need? 

 

Look at the shapes either side. Identify two lines which would carry the same shapes round 

with them under a rotation. 

 

The bottom picture is the hardest, but there’s a principle we can apply. 

 

Image 14.1 .pdf projected. 

 

 

 

 

 

 

 

 

 

 

The principle is that every interior angle is a multiple of the smallest one. And the smallest 

one is the angle between two adjacent diagonals at a vertex. So here we have a 9-gon. Our 

unit, our smallest angle, is 180° ÷ 9 = 20°. We just call this 1. So, in the figure, 4 means 

4 × 20° = 80°. The problem is of course that, in the example we are studying, we’re working 

backwards. We can measure the angles, but then we have to work out what the unit is. We do 
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that by finding the numbers’ highest common factor. Look at the quadrilateral. We would 

have measured 80°, 120°, 80°, 80°. Their highest common factor is 120° − 80° = 40°. 
But now look at the hexagon. Here we would have measured 100°, 120°, 120°, 140°, 120°, 
120°. 140° − 120° = 120° − 100° = 20°. So it looks as if 20°, not 40°, is the angle we’re 

after. 

 

Bring up Image 14.2 .ggb. So try.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Use Measure: Angle. Click on the two arms of your chosen angle. (You may get the 

supplement of the angle you want and have to subtract from 180°.)  

 

The right triangle yields an h.c.f. of 30°, the quadrilateral, 15°. So we guess that our polygon 

has 
180°

15°
= 12 sides. 
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