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                                                    SHAPE & SIZE 
        AREAS, VOLUMES, CENTROID POSITIONS 

  Mensuration formulas and heuristic principles 
 

Introduction 

 

In elementary mathematics we often require a formula for the area or volume of, or the 

position of the centroid in, a standard figure or solid. (The position of the centroid completes 

the picture by telling us how the area or volume is distributed.) The formula has a shape 

dictated by a set of principles which we may call heuristic because, unlike axioms, which 

remain in the background, they help us derive or check the expression. If methods are the 

tactics we employ, these principles suggest the strategies. The distinction is not always clear-

cut. I have for example included among my principles the principle of moments, which 

Archimedes himself famously called ‘The Method’, and Cavalieri’s principle. I illustrate each 

principle with a few examples. Invariably we invoke the principles in combination, which is 

why the same formulas appear under many headings. The table at the end keys the main 

entries. (Columns A and B should in fact have an entry for every shape.) Where other 

headings are relevant in a particular case, we have also written the reference in bold.  

 

The methods required are elementary: Euclidean geometry, especially similar triangles, the 

geometry of simple affine transformations, and arguments which depend on infinitesimals but 

do not use the mechanics of integral calculus, namely Cavalieri’s principle and the centroid 

theorems of Pappus. The latter deals with the many figures with central symmetry we shall 

meet.  

 

It will be useful to look at these topics first: 

 

Archimedes’ ‘method’: all of I 

Cavalieri’s principle: all of D 

The Pappus centroid theorems: J.9 

 

 

The principles we have chosen to isolate are: 

 

(A) The requirement for dimensional consistency 

(B) The requirement for algebraic symmetry 

(C) The relabelling principle 

(D) Cavalieri’s principle 

(E) The principle of the limiting case 

(F) The principle of continuity 

(G) The principle of similarity 

(H) The dissection principle 

(I) The principle of moments 

(J) Analogy 

(K) The principle of maximum symmetry 

(L) The complete information principle 

(M) The principle of assuming the minimum 
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(A) The requirement for dimensional consistency 

 

In terms of length, the degree of any expression for area must be 2, for volume, 3. If p, q, r 

are lengths, 𝑝𝑞2 is a volume, as is 
𝑝4𝑟2

𝑞3 , but not 𝑝𝑞2𝑟. 

 

1) Check the numerator in this expression for the volume of the frustum of a right circular 

cone with base radius R, top radius r and height h: 
𝜋(𝑅2+𝑅𝑟+ 𝑟2)ℎ

3
 .  

 

2), 3), 4), ... Check all the formulas which follow. 

 

As an aside,  

it can be useful to derive dimensionless numbers because they allow us to examine shape 

independent of size. The isometric quotient 𝑄𝐴 =
4𝜋𝐴

𝐿2  for a closed curve of length L, area A, 

takes its greatest value 1 for a circle. The smaller the number, the spikier the shape. You may 

check that the analogous expression for a closed three-dimensional surface of area A, volume 

V  is 𝑄𝑉 =
36𝜋𝑉2

𝐴3 . 
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(B) The requirement for algebraic symmetry 

 

If, in a particular case, the linear dimensions a and b play the same role, then 𝑎2 + 𝑎𝑏 + 𝑏2 

is a plausible area formula, 2𝑎2 + 𝑎𝑏 + 𝑏2 not. 

 

1) Check the formula above (A.1) for the volume of the cone frustum, where r and R play the 

same role.  

 

2) Check the formula below (D.2) for the volume of the pyramid frustum, where a and b play 

the same role. 

 

3) By de Gua’s theorem (J.4), the area of a triangle with side lengths √𝑝2 + 𝑞2, √𝑞2 + 𝑟2, 

√𝑟2 + 𝑝2 is 
√𝑝2𝑞2+𝑞2𝑟2+𝑟2𝑝2

2
. Since the set of lengths is symmetrical in p, q, r, so must the 

expression for area be. Compare the Heron formula (E.1). 

 

By the commutative law, ab is identical to ba. This fact gives us an economic way of solving 

the following problem. 

 

4) The figure on the left shows how a regular 12-gon has been inscribed in a square, which 

has in turn been inscribed in a second regular 12-gon. We are asked what fraction of the outer 

12-gon is occupied by the inner one. Let f be the fraction of the square occupied by the inner 

12-gon; g the fraction of the outer 12-gon occupied by the square. By dissection we find that 

𝑓 =
3

4
, 𝑔 =

2

3
. The required fraction is fg =  

3

4
×

2

3
=

1

2
. But it is also gf. The figure on the right 

makes this transposition geometrically, where a single dissection provides the answer. 
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(C) The relabelling principle 

 

Another way of stating B is that we may swap a for b without changing the formula. But we 

may also do this in cases where the formula is not symmetrical in a and b but their roles are 

equivalent in some sense. 

 

1) The Cartesian equation of the ellipse is symmetrical in a and b, the lengths of the semi-

major and semi-minor axes respectively. These axes are distinguished by length but are 

equivalent geometrically: they are both symmetry axes. The radius of curvature at the ends of 

the major axis is 
𝑏2

𝑎
. What is the  radius of curvature at the ends of the minor axis? We can 

imagine we’ve simply relabelled the two axes, thereby swapping a and b. The answer must 

therefore be 
𝑎2

𝑏
 . Notice incidentally the dimensional consistency. In the limiting case  

𝑎 = 𝑏  and we have the radius of a circle. 

 

 

                                                                   b 

                                                                           a 

 

 

2) For the cone frustum, the height of the centroid, g, above the base is 
(𝑅2+2𝑅𝑟+3𝑟2)ℎ

4(𝑅2+ 𝑅𝑟+ 𝑟2)
, an 

expression which is not symmetrical in R and r. If we swap r and R, we reverse their roles. 

This relabelling has a simple geometrical interpretation: we’ve turned the frustum upside 

down: 

 

 

 

 

                                                                 

 

 

                                                              

                                              
                                                                   R                               r 

 

 

The expression must then be 
[(𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟)−(𝑅2+2𝑅𝑟+3𝑟2)]ℎ

(𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟)
=

(3𝑅2+2𝑅𝑟+𝑟2)ℎ

4(𝑅2+ 𝑅𝑟+ 𝑟2)
, swapping the  

coefficients in the numerator, as required. 

 

3) In J.6 we use as the base of a right triangle, first a leg, then the hypotenuse. This enables 

us to equates two different expressions for the area. And we do the analogous thing in three 

dimensions for the volume of a right tetrahedron. 

 

 

 

 

 

 

 

 

 

  

r R 

g 
h - g 
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(D) Cavalieri’s principle 

 

Modern integral calculus deals in rectangles of infinitesimal width, sheets of infinitesimal 

thickness. It assumes a hypothetical plasticine which is infinitely malleable, completely 

incompressible and infinitely divisible. And it enables us to calculate without comparison 

with a model. But, if we have that model, we can invoke an older use of infinitesimal 

quantities, Cavalieri’s principle. In two dimensions, it concerns two closed curves between 

the same parallel tangents. If they have the same length of section along every parallel 

between the tangents, they have the same area, (and, by extension, their centroids lie on the 

same parallel). In three dimensions, it concerns two solids between the same parallel tangent 

planes. If two solids have the same cross-sectional area in every parallel plane between the 

tangent planes, they have the same volume, (and by extension, their centroids lie in the same 

plane). By a further extension, we can argue that a constant multiplying factor multiplies the 

dimension (area or volume in the respective case) by the same factor.  

 

1) In the case of the pyramid and cone, these cross-sectional areas are directly proportional to 

height above the base. The volume of a pyramid with base area a and height h is 
𝑎ℎ

3
 . By 

Cavalieri’s principle this must also be true for a cone. Indeed we can regard both as examples 

of the general cone. 

 

2) Compare the volume formulas for (I), our cone frustum, and (II), the frustum of a square 

pyramid with base edge a and top edge b, when their volumes are equal: 

 

(I) 
𝜋(𝑅2+𝑅𝑟+ 𝑟2)ℎ

3
=

ℎ

3
(𝜋𝑅2 + 𝜋𝑅𝑟 + 𝜋𝑟2),  

(II) 
ℎ

3
(𝑎2 + 𝑎𝑏 + 𝑏2) =

ℎ

3
[(√𝜋𝑅)

2
+ (√𝜋𝑅)(√𝜋𝑟) + (√𝜋𝑟)

2
]. 

 

At each height we have swapped a circle for a square of the same area. 

 

3) For a right circular cone, the fractional height of the centroid above the base is ¼. This 

must also be true for a square-based pyramid, a tetrahedron, or any other general cone. 

 

4) Consider the intersection of two like cylinders, of radius r, whose axes cut at right angles. 

What is the volume of the common solid? The answer was known to Archimedes and to the 

ancient Chinese. 

 

Set up coordinate axes, one cylinder axis lying along the the x-axis, the other along the y-axis. 

 

Sections parallel to the x-y plane             Sections parallel to the x-z and y-z planes are equal  

are squares  of varying size.                     circles of radius r                                                                                                               

        z 

              y                                                                 

                

 

 

 

                                                 x                                                                               y 
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We can now invoke our corollary to Cavalieri’s principle. If the sections parallel to the x-y 

plane were circles, the solid would be a sphere of volume 
4𝜋𝑟3

3
 . But, for each such circle, we 

must substitute a square of edge 2𝑟, that is, we must multiply the volume of the sphere by 
4

𝜋
, 

resulting in a final volume of 
4

𝜋
×

4𝜋𝑟3

3
=

16𝑟3

3
, that is 

2

3
 the volume of a circumscribing cube. 

 

5) We analyse the ‘napkin ring’ problem in the same way we treat a famous result of 

Archimedes at I.1. The surprising solution prompts an entry in section L. 

 

To produce the ring, we bore a cylindrical hole of radius r through a sphere of radius R, 

resulting in a ring of height h. What is the volume of material in the ring? 

 

                                  y 

 

 

 

 

 

 

                                                                  

 

 

 

 

 

 

Subtracting, we have the area of the annulus, 𝜋(𝜌2 − 𝑟2) = 𝜋 [(
ℎ

2
)

2

− 𝑦2]. 

This gives us different inner and outer radii for an annulus of the same area. These annuli 

have a fixed outer radius and an inner radius which varies linearly with height.  

As we move up the vertical section, we complete a cylinder of height h, radius 
ℎ

2
, from which 

we must subtract a double cone of the same height and radius. 

 

 

 

                                                                           ℎ 2⁄  

                                      ℎ 2⁄                               y                  

 

                h                                                 

 

 

 

 

 

 

Here is another way to arrive at the same result. At H.7 we invoke Archimedes’ ‘hatbox’ 

theorem to show that the volume of the blue solid is 
4𝜋𝑅3

3
sin 𝜃. To obtain our napkin ring we 

must subtract the green solid. 

x 

The radius 𝜌 of the red circle is given by 

𝜌2 = 𝑅2 − 𝑦2. 

The radius 𝑟 of the blue circle is given by 

𝑟2 = 𝑅2 − (
ℎ

2
)

2

. 

y y 

𝜋 (
ℎ

2
)

2

ℎ − 2
𝜋

3
(

ℎ

2
)

2

(
ℎ

2
) 

=
4

3
𝜋 (

ℎ

2
)

3

. 

 

This is the volume of a 

sphere whose diameter is the 

height of the ring. 

x 
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The volume of this is generated by rotating a green triangle about the vertical axis. At J.7 we 

learn that the result is: 

 

 the area of the triangle × the circumference of the circle its centroid travels, that is: 

 
1

2
 𝑅 𝑐𝑜𝑠 𝜃 × 2𝑅 sin 𝜃 × 2𝜋

2𝑅 cos 𝜃

3
 

=
4𝜋𝑅3

3
sin 𝜃[1 − (sin 𝜃)2] . 

 

Subtracting the green from the blue, we have 
4

3
𝜋(𝑅 sin 𝜃)3, as required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 

𝜃 

 

𝑅 cos 𝜃 

2𝑅𝑠𝑖𝑛 𝜃 

2𝑅𝑐𝑜𝑠 𝜃

3
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(E) The principle of the limiting case 

 

A shape can be viewed as one of an infinite series obtained by continuously varying a 

parameter. This series is bounded by limiting cases, where the shape acquires a new name but 

the same formula describes the quantity being measured. The domain of every function we 

consider is the set of non-negative real numbers. Of particular interest is what happens to the 

value of the function when the value of a particular variable is zero. 

 

1) The area of a cyclic quadrilateral with sides a, b, c, d, semi-perimeter s, is 

√(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑). If we deform the quadrilateral till the side of length d 

vanishes, we have a triangle, whose area must therefore be √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐). 

 

2) The side length c of a triangle, whose other sides, lengths a and b, contain an angle 𝜃, 
 is given by 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃. If we deform the triangle till 𝜃 becomes a right angle, 

the third term on the right vanishes and we have 𝑎2 + 𝑏2 = 𝑐2. 

 

3) If the slant height of our cone frustum is s, the area of the sloping part is 𝜋(𝑅 + 𝑟)𝑠 . 

 

We can show this from the net, which looks like this: 

 

 

                            

 

 

 

 

 

 

 

                                                                                                 2𝜋𝑟 

 

 

                                                                                                                              

 

                                                                                                 2𝜋𝑅 

 

(Compare J.3). This illustrates the principle that a simple result may betray a simple way of 

arriving at it. 

 

If we think of the frustum as made of foam and squash it flat (i.e. project it onto the base), it 

becomes an annulus where s is the width of the ring, 𝑅 − 𝑟, giving an area of 

𝜋(𝑅 + 𝑟)(𝑅 − 𝑟) = 𝜋(𝑅2- 𝑟2). 

 

 

                                                                                          s                        s 

  

 

 

If r becomes equal to R, we have a cylinder of which s is the height, giving an area for the 

curved surface of 2𝜋𝑅𝑠. If r vanishes, we have a cone, with area 𝜋𝑅𝑠. Our original volume 

formula for the cone frustum simplifies to  
𝜋𝑅2ℎ

3
. 

 

s 

t 

2𝜋𝑟 

2𝜋𝑅 

Our area is a fraction 
2𝜋𝑟

2𝜋𝑡
 (or 

2𝜋𝑅

2𝜋(𝑠+𝑡)
) of the complete 

annulus, area 𝜋[(𝑠 + 𝑡)2 − 𝑡2]. 

We eliminate t from the ratio 
𝑠+𝑡

𝑡
=

𝑅

𝑟
 to obtain our result. 

 

Alternatively, dividing the annulus sector into concentric 

strips of infinitesimal thickness, and stretching them out,  

We have this trapezium: 

s 
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4) We learn that the sum of the distances of a point on an ellipse from its two foci is constant. 

What is that distance? We have only to choose a point at the end of the major axis to see that 

the answer, 𝑝 + 𝑞, is 2a, where a is the length of the semi-major axis: 

 

 

 

                                                                         q 

                                                      p 

 

 

 

5) Here is some line segment of length s whose midpoint is distant r from an axis of rotation. 

After one revolution it generates a hyperboloid of one sheet. 

 

 

 

 

                          r 

                           

 

                                   s 

 

 

 

 

 
 

 

At J.9 we meet the Pappus centroid theorems. One 

tells us that the area swept out is 2𝜋𝑟𝑠. 

 

In the limiting case, the segment cuts the axis and 

we have a cone. The radius of the base is then  

𝑅 = 2𝑟 and we have the formula 𝜋𝑅𝑠 for its 

surface area. 
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(F) The principle of continuity 

 

Given the base, the area of a triangle is a continuous function of its height. We assume this 

‘algebraic’ continuity in all the cases we deal with in these notes. ‘Geometric’ continuity  

often follows from the algebraic version. 

 

For example, we have a square, s, which we can translate over this checkerboard.  

 

       y 

 

 

  
 

The adjective ‘continuous’ applied to the transformations we use in these notes can be 

defined in terms of ratio. 

We use an affine transformation, the stretch, at H.2, H.4. This preserves ratios of area and 

ratios of volume.  

 

 

 

 

 

 

 

Another affine transformation is the shear, which preserves areas, volumes and their ratios. 

For example, here the ellipse on the right has the same area as the original circle: 

 

 

 

                                     

                                                          

 

 

                                    d                                        d 

 

These properties gives us two ways to solve the following problem.  

 

1) Find the fraction of the outer triangle occupied by the inner one.  

 

In both approaches we subtract the three small outer triangles from the main one. 

 

 

 

x 

We move s by some route from A to B. Let the 

fraction of the square occupied by blue be 𝑓(𝑥). 

We see that 𝑓 (
1

2
) = 0, 𝑓(31

2
) = 1. The 

intermediate value theorem says that, in this 

interval, the value of 𝑓(𝑥) must pass through 

every value between 0 and 1. 

 

We start from P and end at Q. Let the fraction of 

blue be 𝑔(𝑥). If 𝑔(2

3
) =

1

2
, and 𝑔(31

3
) also = 

1

2
, 

there must be some route between P and Q along 

which 𝑔(𝑥) =
1

2
 for every x value. (We show a 

simple one.) 
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(i)  

                                     c 

                                            

               2b 

 

                                                                  3c                                       H 

     b                                                                                     
3𝐻

4
 

                                                                                  
𝐻

3
 

 

                   a                              a 

             
1

4
 

(ii)                       

                                                                                                       
2

3
 

 
3

4
 

                                                                                                                                            

                                                                                           
1

3
 

 

                                                                                                         
1

2
                       

1

2
 

 

 

 

 

Topological continuity is the assertion that all neighbouring points which start together end 

together. This is too vague in the metric context we are working in here. Because of this 

vagueness, a result we derive using continuity must be established more rigorously. Here is a 

case in point. 

 

2) We are asked for the locus of the point P, in which two perpendicular tangents to an ellipse 

with semi-major axis a, semi-minor axis b, meet: 

 

                                                              P 

 

 

We take limiting cases: 

 

          𝑏 = 0                                                                                               𝑎 = 𝑏 

          

            𝑃1                                                                                                𝑃2                                                                                                                                      

 

 

 

 

 

 

 

𝑃1 follows a circle by the converse    𝑃2 follows a circle by the symmetry of  

of Thales’ theorem.                                                     the circle. 

 

 

 

4𝑎 3⁄  

2𝐻

3
 

5𝐻

12
 

On the left we’ve managed to 

work out all the relative height 

and base measurements we need 

to carry out the plan. But the ad 

hoc nature of this approach may 

lead to mistakes. 

On the right, by some combination of 

stretches and shears, we’ve transformed 

the outer triangle into a convenient 

special case, an equilateral triangle, and 

given it unit side. Since all the outer 

angles are 60°, we can use the area 

formula ‘half the side product times the 

sine of the angle between’. We have a 

factor 
√3

4
 which cancels, leading to the 

fraction 
24−4−4−9

24
=

7

24
. 
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We take a special case: 

 

                                                 𝑃3 

 

 

 

 

 

 

If the locus is a circle, 𝑃3 reveals that it has a radius of √𝑎2 + 𝑏2, and the figures for 𝑃1, 𝑃2 

are consistent with this. But, for all this circumstantial evidence, we would need to do the 

necessary coordinate geometry to confirm that the locus is indeed a circle. 
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(G) The principle of similarity 

 

The same ratio holds between any two corresponding linear elements in two similar figures; 

the square of that ratio holds for the areas of any two corresponding 2-dimensional features; 

the cube for the volumes of any two 3-dimensional features.  

 

1) Here is how it applies in two dimensions: 

 

   

 

 

    

                               1                    

 

 

 

 

2) We use similarity when we derive our cone frustum volume formula by subtracting a small 

cone from a larger, similar one.  

 

 

 

                                                                                                                  H 

                                                                                                                        

                                                                                                                        r 

                                                                                                                    h                                                       

                                                                                                                           R 

 

 

 

3) A small cube is placed within a larger, unit, cube so that 4 vertices lie in a face and 4 on 

space diagonals of the larger cube. What is the edge of the smaller cube? 

 

 

Working with the similar right triangles outlined in red, after some algebra and work with 

surds, we find the answer: 1/3.   

      Alternatively, we imagine sitting a like cube    

      on top of the original. By similarity, it shares 

      space diagonals and a centre with the larger  

      cube. By symmetry, therefore, 3 like cubes 

      have the height of the larger one.                   

 

 

 

 

 

 

 

 

 

 

 

k 

area A area 𝑘2𝐴 

We eliminate H by similar triangles: 
𝐻+ℎ

𝐻
=

𝑅

𝑟
. 

The smaller cone has volume 
𝜋𝑟2𝐻

3
 ;  

the larger cone, 
𝜋𝑅2(𝐻+ℎ)

3
. 

Substituting and simplifying, we 

have our result. 
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4) We can substitute any mutually similar figures for the squares on the sides of a right 

triangle and still satisfy Pythagoras’ theorem, for example semicircles. If we reflect the 

semicircle in the hypotenuse and remove common regions, we have Alhazen’s result that the 

‘lunes’ are equal in combined area to the right triangle. (See also 7.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             𝑝 + 𝑞                                 =                ℎ 

                                             𝑝 + 𝑞 + 𝑡                          =                ℎ + 𝑡 

                                             𝑝 + 𝑞 + 𝑡 − ℎ                  =                     𝑡 

                                                                       𝑢 + 𝑣    =                       𝑡. 

                                

5) Roger B. Nelsen uses the left-hand figure above to prove a famous result of Archimedes. 

We have a kite (not drawn) in a circle. We take one of the main constituent right triangles and 

split it into two further right triangles (white). We equate the semi-circle sum for each and for 

the whole triangle. 

 

 

 

 

 

             aa 

 

 

 

 

 

 

                                                

 

 

 

 

 

 

 

 

 

 

 

 

p 

q 

h 

t 

u 

v 

t 

a 

b 
c 

d 

b 
e 

f 

c e 

𝑎 + 𝑏        = 𝑐. 

       𝑏 + 𝑑 = 𝑒. 
 

𝑎 + 2𝑏 + 𝑑 = 𝑐 + 𝑒 = 𝑓.  
 

2𝑏 = 𝑓 − 𝑎 − 𝑑. 

 

2𝑏 is the area of the 

magenta circle, which has 

half the vertical diagonal 

of the kite as diameter. 

 

𝑓 − 𝑎 − 𝑑 is the area of 

the upper yellow region, 

which Archimedes called 

an arbelos (shoe-maker’s 

knife). 

 

So the area of the arbelos 

is that of the circle with 

half the tangent to the two 

smaller circles as diameter.  
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6) A wooden tetrahedron of relative density ½ floats in water. Does it float with an apex 

pointing up or an apex pointing down? 

 

As noted above, a tetrahedron is a general cone. The only property we need is that all cones 

with a given apical angle are similar and their centroids lie ¼ way above the base. Let the 

cone have unit height. It displaces half its volume of water. This represents a cone whose 

height is 
1

√2
3 . Were it to float with an apex pointing up, we would have this situation: 

 

 

 

                                              1 √2
3⁄                                      stable 

 

                                                                                                       waterline 
        0.250                                                                       
 

 

                        unstable 

 

 

 

This would be unstable since any displacement would result in a turning moment about the 

centre of buoyancy, the centroid of the displaced body of water, which lies beneath the 

waterline. It must therefore float with the apex pointing down. 

 

7) Arguably, the most economical proof of Pythagoras’ theorem is Einstein’s. Since the only 

requirement of the figures on the sides of the triangles is that they be similar, Einstein 

chooses the right triangle itself, 𝑇𝑙. 

 

 

 

 

 

 

 

 

 

 

 

8) In this example we wish to compare  

the areas of the blue, green and red circles. 

To do so, we only need take the blue, green  

and red isosceles right triangles, which, 

being the same fraction of their parent circles, 

deputise for them.    

 

The construction stages are numbered. 

 

0  The red circle 

1  A chord 

2  Its centre 

3  The blue circle 

4  The line of centres of the red and blue circles 

1 − 1 √2
3

⁄ ≈ 0.206  

 

𝑇𝑠 

𝑇𝑚 𝑇𝑙 

The smaller triangles share their 

hypotenuses with the sides of 𝑇𝑙  and are 

flipped inwards. Thus we have 𝑇𝑠 on the 

short side, 𝑇𝑚 on the intermediate side, 

making up between them 𝑇𝑙 itself on the 

hypotenuse. 
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5  A line from one end of the chord through the cut of the blue circle and the line of centres, 

    defining the blue isosceles right triangle 

6  A chord parallel to the original one from the cut of 5 with the red circle 

6’ A chord joining the left hand ends of the first two chords 

7  The centre of the second chord, (which lies on the red-blue line of centres), defining 

    the green isosceles right triangle 

8  The green circle 

 

The inset figure shows the isosceles trapezium defined by the first two chords. We see by 

completing isosceles right triangles on the diameters of the blue and green circles that the 

diagonals of this trapezium are perpendicular. It follows that 𝑎2 + 𝑏2 = 2𝑐2.   

 

We return to the main figure. Since 𝜃 =  
𝜋

4
 , the angle at the centre of the red circle = 2𝜃 =

𝜋

2
. 

This gives us the red isosceles right triangle. Duplicating this, we have a similar triangle with 

hypotenuse d, where 𝑑2 = 2𝑐2 = 𝑎2 + 𝑏2. 

 

So the area of the red circle is the sum of that of the blue circle and the green circle. 

 

We can check this result by considering the limiting case. When 𝑎 = 0,  the green and red 

circles coincide; and, relabelling, when 𝑏 = 0, the blue and red circles coincide. 
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(H) The dissection principle 

 

Anything we can measure is conserved on dissection, whether length, area, volume or angle. 

 

We learn a lot from alternative dissections of the same shape. (Many proofs of Pythagoras’ 

theorem exploit this possibility.) Here is an example where we invoke similarity.  

          

1.) We shall call a  pyramid on a square base with apex vertically above a base vertex, a 

‘corner’ pyramid.  We know we can dissect a cube into 3 congruent corner pyramids, whose 

height is equal to a base edge length: 

 

 
 

So the volume of that special pyramid is 1/3 that of the containing prism (a cube). For a 

corner pyramid of general height we can apply a one-way stretch normal to the base and 

argue that volume relations are preserved. Thus we establish that the volume of a general 

corner pyramid is 1/3 that of the containing prism. But, as in the special case, we can show 

this purely by dissection.  

 

We build a pyramid from these pieces, whose volumes are shown relative to the yellow 

block, which would be the containing prism for our corner pyramid: 

 

 
 

To work out the volume of the big pyramid, we can either add the bits, or treat it as a pyramid 

made from the 4 small blue pieces scaled 33 by volume. 

 

 

 

 

 

 

v/8 

v 

1/2 

  1 
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What did the Ancients do about this? For Euclid, a prism is defined by two congruent figures 

lying in parallel planes. So the side faces are parallelograms, not necessarily rectangles. A 

pyramid is defined by a point in one plane and a figure in a parallel plane. So again we can 

have ‘skew’ versions. When you realise Book XII, Proposition 7, as a dissection, you get this: 

 

 

V = 
1

3x 
1

2

 1 + (4 x 
1

2
) + 4V + 

V

2

V

8

V 1

2

1

x 3V

2

27V

2

This gives us an equation 

we can solve for v . 

 

We see below how the 

algebra works out. 

 

As you’ll realise, the result, 

𝑣 =
1

3
 , applies not only to 

the corner pyramid in its 

containing prism but also to 

the right pyramid made 

from 4 such units in its 

containing prism. 
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The parallel faces are to left and right, a blue triangle to the left and a yellow triangle to the 

right. Thus the blue and yellow pieces have congruent bases and the same height (the 

distance between the parallel faces), and therefore the same volume. Now note that the red 

and blue triangles facing you are congruent. Turn the model over on to that parallelogram as 

base. You will find that the red and blue pieces have the same height, and, having the same 

base, the same volume. So the three tetrahedra have equal volumes, each therefore 1/3 of its 

containing prism. (And Euclid uses this proposition to establish the same result for the 

square-based pyramids we are concerned with.)  

 

It is easier to make models for the special case of a right prism with equilateral end faces. 

This results in two congruent tetrahedra (the blue and the yellow) and faces as follows: 

 

                                             Faces 

Tetrahedra          Equilateral       Right             Isosceles 

Blue, Yellow                  1          2                   1 

Red                  0          2                   2 

 

(You find you can assemble the pieces as prisms (right or skew) with each of the three 

constituent triangles as end faces, which is rather nice.) 

 

 

2) The Ancient Babylonians obtained the frustum of a pyramid by removing a cube of edge b 

from the centre of a cube of edge a, yielding 6 congruent pieces, each of volume 
𝑎3−𝑏3

6
 : 

 

 

                                                                     

 

 

 

 

 

 

 

If, in modern terms, we perform a vertical one-way stretch on the frustum so that the height 

changes from 
𝑎−𝑏

2
 to h, increasing the volume in proportion to this, we have the general 

volume formula quoted above: 

 

 
ℎ

(𝑎−𝑏)/2
×

𝑎3−𝑏3

6
=

2ℎ

𝑎−𝑏
×

(𝑎−𝑏)(𝑎2+𝑎𝑏+𝑏2)

6
=

ℎ

3
(𝑎2 + 𝑎𝑏 + 𝑏2). 

 

𝑏

2
 

𝑎

2
 

𝑎 − 𝑏

2
 a 

b 
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3) We are asked to show that the rectangles X, Y are of equal area. 

  
But a dissection argument avoids any algebra: 

 

 

 

 
We can think of the whole figure as a ‘proof without words’, or we can construct the proof 

like this: 

1. Bring together two congruent right triangles R, r as shown. 

2. Choose a point on their common hypotenuse and cut at right angles to the legs. 

This creates two pairs of congruent right triangles (B, b; G, g). 

3. Discard these. 

4. Examine the two rectangles which remain. 

Since we began with figures of equal area and removed figures of equal area, we must be left 

with figures of equal area. 

 

It is important to realise however that, except in one special case, the rectangles are not 

similar. Metrically, similarity involves a ratio, which involves multiplication/division, but 

here we are concerned with addition/subtraction. The distinction is clear in the case of the 

trapezia within this pair of similar isosceles triangles: 

 

 

 

 

 

 

 

 

4) This tetrahedron is inscribed in a cuboid of volume abc.  

We can identify 

similar triangles and 

derive the result from 

these ratios: 
𝑡−𝑞

𝑝
=

𝑞

𝑠−𝑝
. 
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Removing the four right tetrahedra, each of volume 
𝑎𝑏𝑐

6
, we are left with the volume of the 

tetrahedron, 
𝑎𝑏𝑐

3
. 

The four faces are congruent, therefore of equal area. Taking the limiting case of the 

tetrahedron in a cube, the faces are equilateral and the tetrahedron regular therefore. In the 

unit cube, its volume is 
1

3
 and each tetrahedron edge of length √2. To find the volume of a 

regular tetrahedron of unit edge, we must observe the principle of similarity and scale this 

volume by (
1

√2
)

3

, giving us a final volume of  
√2

12
. 

 

We can think of applying stretches parallel to the edges of the unit cube to produce the 

cuboid (or vice versa). Such a transformation preserves ratios of volume (and, in two 

dimensions, ratios of area). Thus, starting with a circle in a square of edge 2b, we have the 

area of an ellipse with axes 2a and 2b: 

 

           2b                              2a 

 

 

                       2b                                  2b 

 

 

Area: 𝜋𝑏2                     Area: 𝜋𝑎𝑏 

 

5) The simplest use of dissection to determine shape areas is summarised in this scheme: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following case, expanding an algebraic expression enacts a dissection. 

And, by analogy, beginning with a 

sphere in a cube of edge 2𝑏 , with 

volume 
4𝜋𝑏3

3
, the volume of an ellipsoid 

with axes 2𝑎, 2𝑏, 2𝑐 is 
4𝜋𝑎𝑏𝑐

3
. 



 22 

 

6) What is the volume, V, of the shell enclosing the central cube? 

 

We use the identity 𝑝3 − 𝑞3 = (𝑝 − 𝑞)(𝑝2 + 𝑝𝑞 + 𝑞2). 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

7) This solid of revolution is a spherical segment symmetrical about a great circle.  

The picture shows a sink plug this shape.  

With a great circle vertical, it lets the water out;  

with a great circle horizontal, it keeps it in. 

We shall dissect it in two different ways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) The first way, from the centre of the sphere we construct two equal cones. This leaves a 

solid of revolution which is a spherical sector. (J.2 shows the analogy with the two-

dimensional case. A spherical sector can be of any shape at the surface of the sphere. As 

shown at J.2, when considering its volume, we can invoke Cavalieri’s principle and treat it 

as a cone with that base, and apex at the sphere’s centre.) By Archimedes’ ‘hatbox’ theorem, 

the surface area is directly proportional to sin 𝜃. And, since the volume is directly 

proportional to the surface area, the volume simplifies to 
4𝜋𝑅3

3
sin 𝜃. Adding the two cones, 

each of volume 
𝜋(𝑅 cos 𝜃)2𝑅 sin 𝜃

3
=

𝜋𝑅3(cos 𝜃)2 sin 𝜃

3
=

𝜋𝑅3 sin 𝜃[1−(sin 𝜃)2]

3
, we have a total of 

2𝜋𝑅3 sin 𝜃[3−(sin 𝜃)2]

3
. 

We can see that, as 𝜃 approaches 𝜋 2⁄ , the cone pair vanishes and we are left with the 

formula for a complete sphere. As 𝜃 approaches 0, the double cone fills the outer cylinder 

until, in the limit, it occupies exactly one third, and the other solid two thirds.  

 

 

 
 

 

 

𝑉   
= (𝑎 + 2𝑡)3 − 𝑎3  

= [(𝑎 + 2𝑡) − 𝑎][(𝑎 + 2𝑡)2 + 𝑎(𝑎 + 2𝑡) + 𝑎2]  
 

 

 

 

= 6(𝑎2𝑡) + 12(𝑎𝑡2) + 8(𝑡3). 

 

Magically, the algebra has told us that there are 6 

face prisms, 12 edge prisms, 8 corner cubes, and 

given us the volume of each. 
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(ii) We split the whole solid into a central cylinder and a ‘napkin ring’. We find at D.5 that 

the volume of the ring is that of a sphere with the same height. We can rearrange the 

expression above to show this. 

 
2𝜋𝑅3 sin 𝜃[3−(sin 𝜃)2]

3
 = 𝜋(𝑅 cos 𝜃)2 × 2𝑅 sin 𝜃 +

4𝜋

3
(𝑅 sin 𝜃)3. 

 

 

(i)                                                                               (ii)                                                                             

                                          

 

 

                                                                    𝑅 𝑠𝑖𝑛 𝜃 

                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 

𝜃 

𝑅 𝑐𝑜𝑠 𝜃 
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(I) The principle of moments 

 

Archimedes famously borrowed the law of the lever from statics - a science he had himself 

just created! - to calculate a number of areas and volumes.  

 

We shall derive one of his classic results and use that in turn to find the position of the 

centroid of a hemisphere. 

 

1) Archimedes hung spheres, cones and a cylinder from the arms of an imaginary balance in 

such a way that, when you ‘scan’ across the assembly, you find everything in perfect balance, 

just as you find the slices equal in area as you ‘climb’ a pair of  Cavalieri solids. The process 

enabled him to use the fact that, in the figure below, the green area is equal to the blue area. 

We can confirm this by Pythagoras’ theorem: 

 

Blue area = 𝜋ℎ2. Green area = 𝜋𝑅2 − 𝜋(𝑅2 −  ℎ2) = 𝜋ℎ2. 

 

The upshot is that the volume of a cylinder equals the sum of those of an inscribed cone and 

hemisphere and furthermore they stand in the ratio 

   Cylinder : Hemisphere : Cone :: 3 : 2 : 1. 

 

 

 

 

 

  

 

 

 

                    

 

 

 

2) We know that the fractional height of the cylinder’s centroid above its base is ½ by 

symmetry, that of the cone, ¼ (J.5). What is it for the hemisphere? 

 

As we have seen, the inter-penetrating cone and hemisphere are equivalent to a cylinder, so 

we know the centroid is at the half-way point and can suspend them centrally from an  

imaginary balance:    

 

 

 

  

 

 

 

 

(The arrows indicate weights but these are proportional 

to the masses.) 

 

A distance ¼ left of centre hangs a mass m (the cone). 

 

A distance d right of centre hangs a mass 2m (the 

hemisphere). 

 

Taking moments, 𝑑. 2𝑚 =  
1

4
.m . 

 

Therefore d = 1/8 and the fractional height of the 

hemisphere’s centroid above its base, h, is 
1

2
 - 

 1

8
=

3

8
. 

 

 

 

h 

h 
R 

m 2m 

d 1/4 h 

R 
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3) Here is how we might go about finding g above, the height of the centroid of a cone 

frustum above the base, without the machinery of integral calculus (though, with it, the 

calculation is much simpler). Having found the height of the cone centroid as 
ℎ

4
 , using the 

principle of similarity, the dissection principle and the principle of moments, and balancing 

solids like this ... 

 

 

 

 

                                                            

  

 

 

 

 

... we find we have all the information we need to label the figure and perform the 

calculation.  

 

4) We can find the height, f, of the centroid of a trapezoidal lamina above the base from this 

figure: 

 

 

 

                  h         b                       
ℎ

2
 

     a                                                       f 

 

                                                        
ℎ

3
 

 

 

 

 

In the next examples we are removing from a figure a similar one. 

 

5) This crescentic lamina has half the area of the complete disk. Where is its centroid (the red 

point)? 

 

Let the outer disk have unit radius. The disk removed must then have radius 
√2

2
.  

 

 

 

                                                                                                        

 

 

 

 

 

 

 

A more interesting result was remarked by Paul Glaister. What fraction f of the area of the 

whole disk must the crescent be that its centroid lies on the inner arc?  

The result is 
(𝑎+2𝑏)ℎ

3(𝑎+𝑏)
. 

 

This expression has essentially 

the same form as that for the 

height of a cone frustum centroid 

above the base, and relabelling 

here has the same significance. 

The limiting case 𝑎 = 𝑏 gives 
ℎ

2
, 

as expected. 

We restore the disk. Its centre is 

the green point. 

Taking moments about the centre 

of the whole disk (black),  

the black-red distance must equal 

the black-green distance, which 

is  

1 −
√𝟐

𝟐
=

𝟐−√𝟐

𝟐
. 
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                2√1 − 𝑓 − 1 

       
         1 − √1 − 𝑓  

   
 √1 − 𝑓 

        
          
  
  

 

                                      

 

 

 

 

 

         1 − 𝑓      𝑓 

 

In a similar way we find that the centroid of a cone of height 4 from which a similar cone of 

half the volume has been removed is distant 
2

2
3−2

1
3

2
 from the centroid of the whole cone; and 

that the centroid of a hemisphere of height 
8

3
 from which a hemisphere of half the volume has 

been removed is likewise  
2

2
3−2

1
3

2
 from the centroid of the whole hemisphere. 

 

6) In section G we treat the arbelos. It’s interesting to find the distance of the centroid from 

the diameter of the outer circle. We need a result from J.9. The distance of the centroid of a 

semicircle of radius r from the diameter is 
4𝑟

3𝜋
 . Write 

4

3𝜋
= 𝑡. 

  

 

 

 

 

 

 

 

 

                                 

                                  

 

 

 

 

 

x is independent of a or b. We can therefore take a limiting case, 𝑎 = 1 or 𝑏 = 1. The 

semicircle is now an arc, the half-circumference, and we have the centroid position for a thin 

wire bent in a half-circle. 

 

In the y-direction we see from this balancing diagram that the position of the centroid 

depends on the values of a and b. 

 

 

 

This time the situation is as shown on the left. 

The figure shows what we need for our moments equation. 

f  is the solution to this equation: 

 

𝑓(𝑓2 + 𝑓 − 1) = 0. 

 

Since we require 0 < 𝑓 < 1, the solution is 

 

  
(√5)−1

2
 , the ‘small’ golden ratio, 𝜏. 

b 

a 

As at J.9 we balance the whole semicircle against the component parts: 

the two small semicircles and the arbelos (green), whose centroid lies at 

a distance x from the diameter. 

 

𝑡(𝑎 + 𝑏)
𝜋

2
(𝑎 + 𝑏)2 = 𝑡𝑎

𝜋

2
𝑎2 + 𝑡𝑏

𝜋

2
𝑏2 + 𝑥

𝜋

2
[(𝑎 + 𝑏)2 − 𝑎2 − 𝑏2]. 

 

On simplification and substitution for t, we find 𝑥 =
2(𝑎+𝑏)

𝜋
, =

2

𝜋
 for the 

unit circle. 

 

This is 
3

2
 × the distance from the diameter to the centroid of the big 

semicircle, a reasonable result. 
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The solution of the resulting equation is 𝑦 =
1−(2𝑎+𝑏)𝑏2−𝑎3

1−𝑎2−𝑏2 . If we turn the arbelos round, we 

have the other value, 𝑦′ = 2 − 𝑦. The centroid lies nearer the smaller cut-out. 

Tabulating results, we soon spot what we can confirm algebraically: 𝑦 − 𝑎 = 𝑦′ − 𝑏 = 1/2. 

This result produces two little rectangles, each of area 
1

𝜋
 : 

 

 
Their combined area is therefore the reciprocal of the area of the big semicircle. 

 

Returning to the centroid of the trapezium, we have a nice example of a limiting case. 

 

7) Our trapezium base is twice the top (as it is in half a regular hexagon). Applying the 

formula in 4, we find the fractional height above the base is 4/9. But, since these three 

triangles are equal in area, all we need do is take the weighted mean of the centroid heights: 
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                                                                  2

3
 

                                                        1

3
 

 

 

Now we find the position of the centroid of this trapezium from which one of scale factor k 

has been removed. Below is our moments figure. Again we balance the components against 

the whole figure. Let the whole figure have unit mass and apply similarity. 

 

 

  

 

 

 

 

 

 

 

                

                            4𝑘

9
 

                           4

9
 

                         x 

 

 

 

 

7) Centred at points on three radii mutually inclined  

at 2𝜋 3⁄ , three circular holes are drilled through a  

uniform disk. The three masses removed have masses  

in integer ratio. The centres of the holes are vertices  

of a right triangle. The centroid of the perforated 

disk remains at the centre. Find the smallest ratio  

which meets these conditions and the dimensions  

of the corresponding right triangle.  

 

Since the centroid does not move, it must be the same 

for the three masses as for the perforated disk. We can 

thus dispense with the disk and consider only the three  

masses. 

 

We balance them in pairs about the radii which pass through the three centres (marked in 

red). The masses are p, q, r, the sides of the right triangle s, t, u. The blue lines mark 

perpendicular distances from the pivot lines. We see three similar kites each comprising a 

congruent pair of ‘1-2-√3’ triangles. The length of the symmetry axis of one of these kites is 

the distance from a mass centre to the centroid. We can satisfy the moments condition by 

setting the p mass at a distance some constant × qr from the centre, and thus symmetrically 

for the other two. 

 

 

The fraction we want is 

 
(2×1

3
)+(1×2

3
)

(1+2)
=

4

9
. 

4𝑘

9
𝑘2 + 𝑥(1 − 𝑘2) =

4

9
(1),  

𝑥 =
4(1−𝑘3)

9(1−𝑘2)
  

=
4(1+𝑘+𝑘2)

9(1+𝑘)
. 

When 𝑘 = 1, 𝑥 =
2

3
. 

What we have here is a wire 

bent into three segments, 

whose centroids lie at their 

midpoints. 

 

The weighted mean we 

require is 
(2×1

2
)+(1×1)

2+1
=

2

3
, 

as expected. 
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By the cosine rule this gives: 

 

𝑠2 = (𝑝𝑞)2 + (𝑞𝑟)2 + 𝑝𝑞2𝑟, 

𝑡2 = (𝑟𝑝)2 + (𝑝𝑞)2 + 𝑝2𝑞𝑟, 

 

𝑢2 = (𝑟𝑝)2 + (𝑞𝑟)2 + 𝑝𝑞𝑟2. . 
 

Setting the third equation equal to the sum of the first two and simplifying, we are left with a 

quadratic equation. Taking the positive root, we have: 

 

𝑟 =
𝑝+𝑞+√𝑝2+10𝑝𝑞+𝑞2

2
 . 

 

The expression is symmetrical in p and q. This is to be expected since we have not 

privileged either one in assigning labels. 

 

By inspection, the smallest solution is 𝑝 = 1, 𝑞 = 2, 𝑟 = 4. 

(By algebraic symmetry and dimensional consistency there is an infinite number of 

scalings of this - (2,4,8), (3,6,12), (4,8,16), ..., which give the same triangle. Indeed there is 
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an infinite number of ‘primitive’ solutions, beginning (2,3,4), (5,6,15), (20,21,29), ... which 

can be scaled in the same way.) 

 

Substituting back, we find the right triangle is the ‘1-2-√3’ case. 
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(J) Analogy 

 

The drawing of analogies is central to mathematical thinking, indeed creative reasoning of 

any kind. Certainly any general formula implies an analogy between the special cases to 

which it applies. But it may be useful to explore how wide the range of cases may be. 

Analogies also hold across dimensions. And invariably the reasoning required in one 

dimension parallels the reasoning required in another.  

 

1) A triangle with base b, height h, has area  
𝑏ℎ

2
 . If we divide a circle of radius R into 

infinitesimal annuli and lay them out straight, we have a triangle of base 2𝜋𝑅, height R, and 

area 
(2𝜋𝑅)𝑅

2
= 𝜋𝑅2. 

 
                                                                      
                                                                         
 
                                                                     2𝜋𝑅 

 

2) We move up a dimension. A cone with base radius R and height h has volume 
𝜋𝑅2ℎ

3
. If we 

divide a sphere of radius R into infinitesimally thick concentric shells and lay them out flat, 

we have a cone of base radius 2𝑅, height R, and volume 
𝜋(2𝑅)2𝑅

3
=

4𝜋𝑅3

3
. 

Note that this is the surface area of the sphere ×
𝑅

3
 and that this multiplying factor applies to 

any spherical sector. This is the analogy with the 2-dimensional case: 

 

                  Two Dimensions                                                 Three dimensions  

 

 

 

 

  

                                                                                                                             

                                                                                                                                        

 

 

 

 

 

 

Arc length  = 𝜃𝑅     Cap area           = 𝜃∗𝑅2 

Sector area = 
𝜃𝑅2

2
                                                         Sector volume  =

𝜃∗𝑅3

3
 

Sector area = Arc length ×
𝑅

2
    Sector volume   = Cap area ×

𝑅

3
 

   

Segment = Sector  - Triangle     Cap       =  Sector    -  Cone 

area            area        area                                            volume      volume     volume 

 

Rather than work with solid angles, we can use planar angles by virtue of Archimedes’ 

‘hatbox’ theorem: 

 

 

 

 

R 

 

Isosceles triangle Cone 

Arc Segment 

Sector 

Cap area Cap  

Spherical 

sector Angle 𝜃 

Solid 

Angle 𝜃∗ 

R 
R 
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                                                           Cap area = (1 − cos 𝜑)𝑅 × 2𝜋𝑅 = 2(1 − cos 𝜑)𝜋𝑅2 

 

 

 

 

 

 

3) Correspondingly, the area of an annulus is that of a trapezium with these dimensions:      

                                                                    
              2𝜋𝑟 

                                                                

                                                                                               
                                                                                   2𝜋𝑅 

 

4) We move up a dimension. The volume of the frustum of a cone with base radius R, top 

radius r, height h, is 
𝜋(𝑅2+𝑅𝑟+𝑟2)ℎ

3
 . If we divide a spherical shell of inner radius r, outer radius 

R, into infinitesimally thick concentric shells and lay them out flat, we have a cone of base 

radius 2𝑅, top radius 2𝑟, height 𝑅 − 𝑟, and volume 

 

 
𝜋[(2𝑅)2+(2𝑅)(2𝑟)+(2𝑟)2](𝑅−𝑟)

3
=  

4𝜋(𝑅3−𝑟3)

3
. 

 

5) We can dissect a tangential polygon into triangles with apices at the incentre. Applying our 

area formula 
𝑏ℎ

2
, we find that such a polygon with inradius r, perimeter p, has area 

𝑝𝑟

2
.  

 

 

 

 

 

 

 

 

 

 

 

We move up a dimension. The volume formula for a pyramid of base area a, height h, is 
𝑎ℎ

3
. 

By analogy with the two-dimensional case, the volume of a tangential polyhedron with 

inradius r, total face area  A, is 
𝐴𝑟

3
 . The limiting case of such a solid is the sphere, whose 

volume must therefore be  
(4𝜋𝑟2)𝑟

3
 = 

 4𝜋𝑟3

3
 .  

 

6) Moving in the opposite direction, for those familiar with calculus, we can say that, as the 

circumference of a circle is the derivative of its area with respect to its radius, 
𝑑(𝜋𝑟2)

𝑑𝑟
= 2𝜋𝑟, 

the surface area of a sphere is the derivative of its volume with respect to its radius, 
𝑑(

4𝜋𝑟3

3
)

𝑑𝑟
=

4𝜋𝑟2. 

 

7) A simple numerical relation in one dimension invariably accompanies a simple numerical 

relation in another. The following dimensional sequence leads us to the height of the 

𝑅 − 𝑟 

R 𝜑 

(1 − cos 𝜑)R 
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tetrahedron centroid above the base, (and by Cavalieri’s principle to that of the cone, 

required above). 

 

The fractional height of the centroid above the base is given in the following three cases. 

 

A  We have a straight bar   B  We have a             C  We have a  

of vanishingly               triangular lamina                               tetrahedron. 

small width.                              of negligible thickness.  

 

 

 
We shall assume result A to prove in turn results B and C. 

 

B  We begin with a triangular sheet and take strips parallel to an edge. We know the centroid 

is at the centre of each, and therefore the centroid of the whole triangular sheet lies on a 

median. There are 3 such medians so the centroid of the sheet lies at the intersection of any 

two. 

By similar triangles we see that the height above the base is 1/3 of the total height (and lies 

indeed 1/3 the way up any median). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  We slice our tetrahedron into a series of triangular laminae parallel to a face. We know 

that the centroid lies 1/3 the way up a median on each, so the centroid-of-centroids lies on a 

line joining the centroid of the top face to the opposite vertex. There are 4 such lines so the 

centroid-of-centroids lies at the intersection of any 2. By similar triangles we see that the 

height above the base is ¼ of the total height: 

 

 

 

 

2s 

s 
h 

ℎ

2
 2𝑠

2𝑠+𝑠
.
ℎ

2
 = 

2

3
.

ℎ

2
 =  

ℎ

3
 



 34 

 

 

 

 

 

 

 

 

 

 

 

 

8) If we draw an analogy across dimensions, each object, and each attribute of that object, in 

one dimension must be matched by an object, and an attribute of that object, in the other. The 

analogy between Pythagoras’ theorem in two dimensions and de Gua’s theorem in three is 

clearest if we derive both using coordinate geometry. 

 

 Pythagoras                     de Gua 

 

Object: a right triangle   Object: a right tetrahedron 

 

                          y                                                      y 

 

                              

                   (0,b)                                             (0,b,0)      

                             d      h                                                D          (a,0,0) 

                                                  x                                           A                 x 

                                       (a,0)                                                          

 

                                                                               (0,0,c) 

                                                                                                 z 

Intercept form of equation of line:                 Intercept form of equation of plane: 

 
𝑥

𝑎
+

𝑦

𝑏
− 1 = 0 .                              

𝑥

𝑎
+

𝑦

𝑏
+

𝑧

𝑐
− 1 = 0 .  

 

Distance d from origin:   Distance D from origin: 

 
1

√(
1

𝑎
)

2
+(

1

𝑏
)

2
 =  

𝑎𝑏

√𝑎2+𝑏2
 . (1)                         

1

√(
1

𝑎
)

2
+(

1

𝑏
)

2
+(

1

𝑐
)

2
=  

𝑎𝑏𝑐

√𝑎2𝑏2+𝑏2𝑐2+𝑐2𝑎2
 . (1) 

 

Equating areas:    Equating volumes: 

 
ℎ𝑑

2
=

𝑎𝑏

2
 ⇔ ℎ =

𝑎𝑏

𝑑
  .   (2)                                  

𝐴𝐷

3
=

𝑎𝑏𝑐

6
⇔ 𝐴 =

𝑎𝑏𝑐

2𝐷
  .                    (2) 

 

                            Substituting (1) in (2) and squaring: 

 

ℎ2 = 𝑎2 + 𝑏2.                                                     𝐴2 = (
𝑎𝑏

2
)

2

+ (
𝑏𝑐

2
)

2

+ (
𝑐𝑎

2
)

2

. 

 

Lengths of sides                 correspond to          areas of faces. 

 

Note that the dimension of length in Pythagoras’ result is 2, but in de Gua’s, 4.  

H 

𝐻

3
 

2

3
𝑡 

2𝑡 𝑡 

𝟐𝒕

𝟐𝒕 + 
𝟐𝒕
𝟑

.
𝑯

𝟑
=  

𝟑

𝟒
.
𝑯

𝟑
=  

𝑯

𝟒
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9) Pappus’ centroid theorems concern the area or volume of a shape generated by one 

rotation about an axis. In two dimensions, we obtain an area by multiplying the length of an 

element by the circumference of the circle followed by its centroid. In three dimensions, we 

obtain a volume by multiplying the area of an element by the same factor. We also obtain the 

surface area by multiplying the perimeter of the element. On the left we derive the area of an 

annulus, starting with a radially aligned line segment; on the right we obtain the volume of a 

torus, starting with a circle in the plane of the axis: 

 

 

 

 

 

 

 

 

 

 

 

Area = (𝑅 − 𝑟) × 2𝜋
(𝑅+𝑟)

2
= 𝜋(𝑅2 − 𝑟2)         Volume = 𝜋𝑝2 × 2𝜋𝑞 = 2𝜋2𝑝2𝑞 

                                                                            Area = 2𝜋𝑝 × 2𝜋𝑞 = 4𝜋2𝑝𝑞  

 

To find the distance between the centroid of a half-disk of unit radius and its diameter, s, we 

invoke the 3-D version. By rotating a semicircle about a diameter we generate a sphere: 

 

 

 

  

 

                                                             
𝜋

2
× 2𝜋𝑠 = 

4

3
𝜋, 

                                                             𝑠 =
4

3𝜋
. 

 

 

In the following example we invoke the principle of moments and the principle of similarity 

in an application of that result. 

 

A half-annulus of unit outer radius is formed by extracting from a semicircle a concentric 

semicircle of half the area. Determine the distance d of the centroid from the diameter. 

(Compare I.5.) 

 

We restore the semicircle removed and balance it against the half-annulus about the centroid 

of the complete semicircle (black). Since those regions are of equal area, the black-red and 

black-green distances are equal (d ). (The figure does not represent the true relative distances, 

which have been increased for clarity.) 

 

 

 

 

 

 

 

 

r 

R 𝑅 + 𝑟

2
 

R -  r 

p 

q 

s 
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                             b 

                           a 

                          d 

 

 

 

 

Recalling our aside at I.5, when we calculate the fraction of the whole semicircle for which 

the centroid lies on the inner curve, we find that again, it’s the ‘small’ golden ratio, 𝜏. The 

circle removed at I.5 and the semicircle removed here have the same radius. 

 

10) Returning to the torus, consider two different sections parallel to the axis of rotation 

symmetry, the z-axis,  

 

one in the x-z plane:           ... the other parallel to the y-z plane, tangential 

       to the inner circle in this projection:  

 

                                    y                                                                     y 

 

 

 

                             R                                                                     R-r 

       

                       r            

                                                                                     

 

 

   

 

This section is a circle.                                       This is half a ‘Cassinian oval’ (a teardrop  

          shape in this case). 

 

From the Pappus theorems, we know that both the areas of the two section figures and their 

perimeters stand in the inverse ratio of their distances from the centre: 

 

                                 𝑅 − 𝑟                        :                              R           

 

... this without knowing anything about Cassinian ovals. 

 

    A 

 

 

 

 

 

 

 

The radius of the semicircle removed is 
√2

2
. 

The distance of the black point from the diameter, a, is 
4

3𝜋
. 

The distance of the green point from the diameter, b, is 

proportional to the radius of the semicircle removed, 

therefore 
4

3𝜋
×

√2

2
=

2√2

3𝜋
 . 

This makes  𝑑 = 2𝑎 − 𝑏 =
8−2√2

3𝜋
. 

x x 

By the same token we know that, of the set of five 

regions to the left, A (a double teardrop) has the 

greatest area. 

 



 37 

 

 

11) We can use a Pappus theorem to establish one of our standard formulas. 

 

 

 

 

 

                                                                                                     h 

                                                                                                             𝑟 3⁄  

 

 

 

 

                                                                                                                         r 

 

12) At J.9 we find the centroid of a half-disk from which a smaller half-disk has been 

removed. In the three-dimensional analogue we have a hemisphere from which a smaller 

hemisphere has been removed. From I.2 we know the position of the centroid in the complete 

hemisphere. Let the radius of the smaller hemisphere be k and the centroid of the shell be 

distant x from the diametric plane. Let 𝑥 −
3

8
= 𝑠. 

 

 

                                      

 

 

 

 

 

 

 

                              

 

 

 

 

 

 

 

 

 

 

 

This again is what we expect: by Archimedes’ ‘hatbox’ theorem, projecting a hemisphere 

from its axis onto an enclosing cylinder preserves area, and we know that the centroid of a 

cylinder lies halfway along its axis. 

 

Returning to 8, here are two analogous problems in the 2-D and 3-D cases. The latter is more 

difficult only in that we must first ensure the constituent right triangles have integral area. 

 

 

 

 

Using a result from J.7, and seeing by projection that 

The radius of the circle to be followed by the centroid is 
 𝑟

3
, we have the formula for the volume of a cone: 

 
ℎ𝑟

2
× 2𝜋

𝑟

3
=

𝜋𝑟2ℎ

3
. 

 
 x 

   3

8
   

    
3𝑘

8
        

 

 

    

 s 

   3

8
(1 − 𝑘)   

           

 

 

    

Dividing through by the volume of the hemisphere, 

taking moments about the hemisphere centroid, 

and applying similarity, we have: 

 

𝑠(1 − 𝑘3)𝑠 =
3

8
(1 − 𝑘)𝑘3 

 

                    s 

 

 

                    𝑥 =
3(1+𝑘+𝑘2+𝑘3)

8(1+𝑘+𝑘2)
. 

 

We check the limiting case 𝑘 = 0 gives our original 

value. 

At the other end of the scale, 𝑘 = 1 gives 𝑥 =
1

2
. 

This represents a hemispherical shell of infinitesimal 

thickness. 
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13)  

 

(i) The figure below is a cuboid. How can I choose integral lengths a, b, c so that d is 

integral? 

 

 

 

                                     d        c 

 

                                                   b 

 

 

 

     a 

 

(ii) The figure below is a right tetrahedron. How can I choose integral areas A, B, C (labelling 

the right-angled faces) so that D is integral? 

 

 

 

 

                p C 

            A D 

                      q                         

  r        B 

 

 

 

 

 

From [1], [4]: 
2𝑟

𝑝
= 𝑟𝑝, 𝑝 = √2.  

So long as q,r also each have a factor √2 and x is an integer, our right triangles will have 

integral area, and we can obtain a solution set which belongs to the family above.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The problem is that of finding a 

Pythagorean quadruple (a,b,c,d). 

 

One family of solutions is  

[𝑥, 𝑥 + 1, 𝑥(𝑥 + 1), 𝑥(𝑥 + 1) + 1]. 

By de Gua’s theorem the required 

quadruple is (A,B,C,D). 

𝐴 =
𝑟𝑝

2
, 𝐵 =

𝑞𝑟

2
, 𝐶 =

𝑝𝑞

2
. 

For the above solution family we 

need: 

2𝑥 = 𝑟𝑝,   [1] 

2(𝑥 + 1) = 𝑝𝑞,   [2] 

2𝑥(𝑥 + 1) = 𝑞𝑟 .  [3] 

[3]÷ [𝟐]: 𝑥 =
𝑟

𝑝
.  [4] 
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(K) The principle of maximum symmetry 

 

Always draw a figure to make the symmetry clear, which may mean adding lines or siting the 

figure in a bigger one, possibly a tiling.  

 

1) Here is a favourite proof without words of the late Ross Honsberger. Given these two right 

triangles, the green one isosceles, find angles 𝜃 and 𝜑. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The principle is particularly useful in deciding on minimax cases. 

 

2) A rectangle is inscribed in a semicircle.      We know the answer for a full circle: 1:1, 

What is the aspect ratio which gives it the    that of the inscribed square. If the answer to  

greatest area?                                                 our first question differed from 2:1, it would 

                                                contradict the answer to our second. 

 

 

 

 

 

 

 

 

 

  

 

We can extend the argument. What is the greatest quadrilateral we can inscribe in a 

semicircle? Answer: Half a regular hexagon, where the cut is made along a greatest diagonal. 

What is the greatest pentagon in a semicircle? Answer: Half a regular octagon. And in 

general: What is the greatest n-gon? Answer: Half a regular [2(𝑛 − 1)]-gon. 

 

 

 

 

 

 

 

 

 

 

 

 

𝜃 
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3)  The circle on the left is cut by the blue cross so that the area q in the lower left quadrant is 

half the area of the whole circle. Write the area p in the upper right quadrant in terms of the 

coordinates (a,b) of the centre of the cross. 

 

 

 

 

 

                                             p                                                      p                   p              

                                         (a,b) 

                                                                                                               2a 

                                                                                             

                             q                                    

 

             

                                                                           p                   p 

 

 

 

 

On the right we add the red lines to produce 9 regions symmetrical about the centre. Equating 

areas, we then have 𝑞 = 𝑝 + 𝑠 + 𝑡 + 4𝑎𝑏 = 3𝑝 + 𝑠 + 𝑡 ⇔ 𝑝 = 2𝑎𝑏. (Bur see M.) 

 

4) As a special case of Routh’s theorem, we find that the central triangle on the left has 1/7 

the area of the outer one. J. G. Mikusinski drew two parallels to each side of the inner 

triangle, which he extended. This created 7 congruent triangles, the central one and 6 more, 

parts of which lay outside the big triangle. But, with the half-turns shown, he swung the parts 

outside over the gaps inside, filling the big triangle and confirming the result. 

 

 
 

 

5) Case 4 is an example of embedding a figure in a tiling. Though no measures are involved, 

here is another. In the figure on the left are marked two square centres and two midpoints of 

lines joining corresponding vertices. The Finsler-Hadwiger theorem claims that the dotted 

quadrilateral is a square. 

 

y 

x 

s 

s 

t t   2b 
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We have produced the tiling on the right by translating that figure. The line midpoints now 

appear as centres of parallelograms. The red and green lines are parallel. The red and green 

points are centres of fourfold rotation symmetry. Therefore both red and green quadrilaterals 

are squares and, by virtue of the translation, of equal size. The black points are centres of 

twofold rotation symmetry. Because they lie at midpoints of red and green sides, they define 

squares like that shaded which have half the edge of the larger squares. Our original 

quadrilateral is such a figure. 

 

6) We are asked to find the position of the centre, and the radius, of the sphere circumscribing 

a right tetrahedron of perpendicular edge lengths a, b, c.  

 

Four points, not all in one plane, define a sphere. The tetrahedron, and the cuboid defined by 

it, must therefore share the same circumsphere. This locates the centre and gives us a radius 

equal to half the length of the cuboid’s space diagonal. 
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Analogy with the right triangle, where the circumcentre is the midpoint of the hypotenuse, 

would lead us to expect that result. 

 

Establishing the global symmetry can help us restrict the solution space. 

 

7) This isometric grid is of two colours. Triangles of opposite colour share an edge. We can 

move the free triangle shown only by translation. What is the least fraction, f, of the triangle 

which can be blue? 

 

We shall set up a hypothesis then test it. 

 

A preliminary observation is that white triangles point right, the free triangle points left. 

Since the free triangle cannot therefore be brought into coincidence with a white triangle, f 

must be greater than zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the right we show in red a unit translation cell of the tiling.  We also show the locations of 

the three centres of 3-fold rotation symmetry and the mirror lines. As a result of the 

symmetry, if we move the centroid of the free triangle along the vertical arrow, that is, in line 

with a triangle side, and along the inclined arrow, that is, at right angles to a triangle side, we 

have information about 12 directions mutually inclined at 30°. The 6 distinct positions we’ve 
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chosen in the two directions enable us to work out f in 1 36⁄ 𝑠 by counting triangles on an 

isometric grid where a tiling triangle side is 6 times the length of a grid triangle side. The 

sequence of values along a vertical line runs: 1 3, 7 18, 5 9⁄⁄ , 1 2⁄ , 5 9⁄ , 7 18⁄  ⁄ ; along an 

inclined line: 1 3, 1 2⁄⁄ , 1 3, 1 2, 1, 1 2⁄⁄⁄ . These figures suggest the hypothesis that the 

answer we seek is 1/3. We now show that.  

 

We can imagine a continuous, centrally symmetrical surface in which each of these fractions 

are heights above the base plane. The simplest possibility is that the heights in a section 

between any two of our discrete points fall between the start and end values. That would 

establish our claim that we have found the global minimum. We shall not try to do this but 

instead examine two local minima, using ideas from sections (B), Algebraic symmetry and 

(G), Similarity, which, between them, cover all cases. 

 

We meet the fraction 1/3 in two situations: in one, the centroid of the free triangle coincides 

with a tiling vertex; in the other, it coincides with the centroid of a white tile. We shall show 

that, when the free triangle contains a tiling vertex (below left), the smallest fraction,𝑓1, is 

1/3; and that when its centroid falls within a white tile (below right), the smallest fraction, 𝑓2, 

is also 1/3. 

 

 
 

  

If we give a triangle unit area, we have by similarity:  

  

𝑓1 =
𝑎2+𝑏2+𝑐2

ℎ2  . This expression is symmetrical in a, b, c. Therefore any value of a which 

gives a minimum value for 𝑓1 must equal that of b and c, call it m. 

By Viviani’s theorem we have 𝑎 + 𝑏 + 𝑐 = 3𝑚 = ℎ . Thus 𝑓1 =
3𝑚2

(3𝑚)2
=

1

3
. (In fact we don’t 

need to invoke the theorem, we only need observe that, when 𝑎 = 𝑏 = 𝑐, each =
ℎ

3
.) 

𝑓2 =
𝑝2+𝑞2+𝑟2

ℎ2  . 
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𝑠 + 𝑝 = 𝑡 + 𝑞 = 𝑢 + 𝑟 =
2ℎ

3
  

⟺ (𝑠 + 𝑡 + 𝑢) + (𝑝 + 𝑞 + 𝑟) = 2ℎ . 

By Viviani’s theorem (or otherwise) 𝑠 + 𝑡 + 𝑢 = ℎ. 

Subtracting, we find 𝑝 + 𝑞 + 𝑟 = ℎ  and we can argue as above. 

 

In the figure below we see that, in the first case, the locus of the boundary of the free triangle 

is a hexagon with a side equal to a grid triangle side. 

 

In the second case we have extended the locus so that the boundary is that of a triangle with 

twice the edge of a grid triangle. It represents all the positions where the free triangle does 

not contain a grid vertex. We note that, when the centroid of the free triangle moves into a 

grey zone, the amount of grey it contains becomes at least 1/2, that is, greater than 1/3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A simpler case is this.  

 

8) What can you say about the fraction of this hexagon occupied by a given colour as it is 

translated over the tiling? 

 

 

Dissecting the hexagon into three 

congruent rhombuses, we note that each is 

a unit translation cell for the whole tiling. 

 

In any given position therefore it must 

contain the same proportions of the three 

colours. 

 

Since the three colours are equally 

represented, the fractions of the cell must 

be equal, therefore 
1

3
. 

 

And this must be true of the hexagon the 

three rhombuses compose. 

Since the hexagon allows all 

positions of the free triangle where it 

contains a grid vertex, and the big 

triangle allows all positions of the 

free triangle where it does not 

contain a grid vertex, between them, 

the hexagon and the big triangle 

allow all possible positions of the 

free triangle. Since in each case the 

grey fraction is not less than a third, 

this local minimum must be the 

global minimum. 
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9) Show that, wherever we translate this square on the checkerboard, exactly half its area is 

black, half white. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can make the same argument we did in 8. The 

square comprises two unit translation cells. 

 

We could also make the case for the large hexagon in 7. 
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(L) The complete information principle 

 

In the real world the problems we face may be poorly defined and the information needed to 

solve them incomplete. But when we are set a question in an exam or competition, we must 

assume that enough information has been provided to answer it. On occasion, a fact may be 

implied but not stated: we can ‘read between the lines’. A famous instance is the following. 

 

1) A metal napkin ring of height h is made by symmetrically boring out a cylinder from a 

sphere. (The result is shown in axial section below.) What is the volume of metal remaining? 

 

 

 

 

 

 

 

 

 

 

The following example is due to Andrew Jeffrey. 

 

2) This rectangle has area A. What is the area shaded? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h 

We are not told the radius of the cylinder, 

which must therefore cancel out in any 

calculation we may make. We are 

therefore free to make it zero. This leaves 

us with a sphere of diameter h, volume 
𝜋ℎ3

6
. (This result is justified at D.5.) 

We see that the triangles all have the 

height of the rectangle but different 

base lengths, which, however, sum to 

the rectangle’s width. We can 

therefore combine the triangles in a 

single one whose base has the width 

of the rectangle, giving our answer, 
𝐴

2
. 
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(M) The principle of assuming the minimum 

 

We invoke this principle most commonly when reviewing a result already obtained. Looking 

over K.3, we realise that all we have assumed about the closed curve is the two perpendicular 

mirror lines. The result therefore applies equally to this figure: 

 

 

                                10 

                                      

                                                                                              

                                                                                                                                                                                                       

    

                                     

                                                                                                              8 

 

                                                                                  

 

 

 

 

 

The red rectangle has half the area of the outer rectangle. The four corner rectangles are 

congruent. Any one of them is equal in area to the right triangle. 

 

Recalling L, The complete information principle, we realise that in K.3 we have too much 

information, that is to say, we have a special case of a more general one. The statement of the 

problem would be improved by adding something like ‘Can you extend your result?’. This 

criticism applies also to H.3, where the rectangle stands for any parallelogram, and G.3, 

where the cube stands for any parallelepiped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 

5 

2 

6 

3 

2 
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Summary 

 

We end with two examples which apply a number of the principles we have been discussing. 

Throughout these notes our aim has been to minimise computation. The principles allow us to 

steer a course between algebra and geometry which achieves this. In both examples we are 

interested in the fraction f of the outer figure occupied by the two inner ones. 

 

           A                                                                      B                     

 

                                        a 

 

               1 

 

                                    b 

 

 

In each case we have three similar shapes, the two within sharing respectively the diagonal 

and a diameter of the third. By the principle of similarity 𝑓𝐴 = 𝑓𝐵 = 𝑓 =
𝑎2+𝑏2

12 = 𝑎2 + 𝑏2. 

Notice that we have observed dimensional consistency. Though a and b alone have the 

dimension of length, f is a ratio, therefore dimensionless. By the relabelling principle we can 

swap a and b without changing the figure: the expression for f must therefore display 

algebraic symmetry, and we see that it is indeed symmetrical in a and b. Consider f as the 

function 𝑔(𝑎, 𝑏). Since 𝑎 = 1 − 𝑏, 𝑏 = 1 − 𝑎, there is a symmetrical relation between a and 

b. We can choose either to write 𝑔𝑎(𝑎) = 2𝑎(𝑎 − 1) + 1, or 𝑔𝑏(𝑏) = 2𝑏(𝑏 − 1) + 1. To 

find the maximum value of the function, we take the limiting case 𝑎 = 1, 𝑏 = 0, or 𝑏 =
1, 𝑎 = 0, giving the value 1. By the relabelling principle, were the minimum value other than 

½, swapping a and b would produce two minima. Assuming there is a unique minimum, it 

must be ½. Notice that this argument avoids any analysis of the function 𝑔(𝑎, 𝑏). 
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 Occurrences of a given shape: 
 

Shape Type Attribute                                                Text location 

   A B C D E F G H I J K L M 

Triangle General Area  3   1   5  1    

Rectangle          5      

Parallelogram          5      

  Side length relations              

  Centroid position          7    

  Area of triangle 

defined by cevians 

          4   

Trapezium General Area        5  3    

  Centroid position         4     

Cone General Volume    1 3   1,7 1 1,11    

 Circular Surface area     5         

 General Centroid position    3   6   5    

Cone frustum General Volume 1 1  2   2   4    

 Circular Surface area     3         

 General Centroid position   2      3     

Cylinder  Volume    5     1     

  Surface area     3         

  Centroid position         2     

Cylinder pair Axes cutting 

at right angles 

Volume of common 

solid 

   4          

Prism  Triangular         1      

Pyramid General Volume  2      1  5    

  Centroid position              

Pyramid frustum Square Volume    2    2      

  Centroid position              

Cone Circular Surface area    5      2    

Conical shell           5     

Circle  Area     3   5 1 1,3,9    

  Circumference          6    

Annulus  Area     3    1 3,9    

Half-annulus  Centroid position          9    

Semicircle  Centroid position              

Circular arc  Length          2    

Semicircular arc  Centroid         6     

Circular sector  Area          2    

Circular segment  Area          2    

Lune Crescentic          5     

Ellipse  Area        5      

  Curvature radii   1           

  Focal property     4         

  The orthoptic circle      2        

Sphere  Volume    4,5    5 1 2,5,6    

Sphere less central 

cylinder 

 Volume            1  

  Surface area          6    

Spherical shell  Volume          4    

  Centroid position         5     

Spherical sector  Volume          2    

Spherical cap  Surface area          2    

  Volume          2    

Spherical segment  Volume        7      

Torus  Volume          9    

  Surface area              

Ellipsoid  Volume        5      

Hemisphere  Centroid position         2     

Hemispherical shell Empty Centroid position          12    

Tetrahedron Regular Volume        4      

Tetrahedron General Centroid position        1  7    

Triangle Right Area   3           

  Pythagorean relation          8    

  Circumcentre position              

  The lunes of Alhazen       4       

Tetrahedron Right Volume   3       8    

  Pythagorean relation          8    

  Circumcentre position           6   

  Circumradius           6   

Tangential polygon  Area          5    

Tangential 
polyhedron 

 Volume          5    

Cube  Volume        6      

Cubic shell  Volume        6      
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