
 
 
     Magic Moments with Perfect Arithmogons  
 
In formal mathematics we might organise  
the three equations 
 
p + q       =  a 
      q + r  = b 
p       + r  = c 
 

like this: 
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The triangular arrangement is called an arithmogon. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The arithmogon gives us an overview of the three separate additions. We’re going to use it to 
show additions not just of pairs but of sets of 3, 4, 5 and more. You’ll notice that we’ve added 
a central box summing the red numbers. Notice that the black number is the sum of a red 
number and the opposite blue number, and that the blue numbers sum to twice the red. 
 
But I chose that particular example because of a special property. Each red number divides 
the sum of the others, so the blue number opposite. Therefore it also divides the total of all 
three, the black number. We shall call such a set of red numbers, and the arithmogon 
representing it, division perfect, or just perfect for short. Our diagram is a perfect arithmogon 
of order 3, 3 because it contains 3 red numbers. 
 
We shall allow no repeats, otherwise we could have sets consisting completely of ‘1s’: 
1,1,1{ }, 1,1,1,1{ },  … 

 

In recreational maths we would do 
so like this: 

b

c a

r q

p

 

c
b

a

r

q

r

q

p

p

 

The triangle to the left has side lengths a = 
3, b = 4, c = 5. Find p, q, r. 
 
We soon pencil in the red numbers: 
 

6

4

5 3

3 1

2

 



And we shall only allow primitive solutions, not those sharing a factor, so 1,2,3{ }  is fine but  
2,4,6{ }, 3,6,9{ }, 4,8,12{ },  … not. 

 
Here are some perfect arithmogons of higher order. 
 
In this perfect order 4 arithmogon, as required, a red number complements the blue number 
opposite to give the black one. This time the blue numbers total 3 x the red. On the right we 
show it without arrows and boxes. To avoid a tangle of lines with higher orders, this is how 
we’ll show arithmogons from here on. 
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As you can confirm, we can generalise the observation we just made. The blue numbers sum 
to (n – 1) x the black number, where n is the order. 
 
Some of the sets we’ve just pictured are included in this list: 
 
Order     Set                                       Total   Prime       Divisors of total 
                                                                                                      factors      missing from set 
 
3              1,  2,  3,  (6,  12,  24,  …)                       6       2, 3 
4              1,  2,  6,  9,  (18,   36,   72,  …)                      18       2, 3         3 
                1,  4,  5,  10,  (20,  40,  80,  …)         20      2, 5         2 
                2,  3,  10,  15,  (30,  60,  120,  …)                  30      2, 3, 5     5, 6 
5              1,  2,  4,  7,  14,  (28,  56,  112,  …)                       28      2, 7 
                1,  4,  10,  15,  30,  (60,  120,  240,  …)                 60      2, 3, 5     2, 3, 5, 6, 12, 20 
                1,  4,  20,  25,  50,  (100,  200,  400,  …)             100      2, 5         2, 5, 10, 20  
6              1,  4,  40,  45,  90,  180,  (360,  720,  1,440,  …) 360      2, 3, 5     2, 3, 5, 6, 8, 10, 12    
             15, 20, 24, 30, 60  
 
The main thing to notice is that, as you move right, sooner or later you hit a number in bold. 
All the numbers to the right of it are also in bold. And each one is twice the last. These 
numbers sum all the numbers to the left of them. The numbers in brackets we can add in at 
will to make bigger sets. In some cases however, we have to do one or more doublings before 
we can complete the set (and enter the bracket). Two numbers are not only in bold but are 
picked out in green. If you look at the right hand column, you’ll see that in these cases every 
divisor of the total is present in the set. These numbers, then, are the sum of all their divisors 
except the numbers themselves. The reason their divisors make up my perfect sets is that, if a 
number divides the total, it must divide the total less itself. Numbers like these are called 
perfect numbers. If you’ve read my piece What makes perfect numbers perfect?, you’ll know 
a bit about these, but in any case I’ll give the important facts here. 
  
The formula for a perfect number is 2n−1 2n −1( ) , where the number in the bracket is a prime 

of the Mersenne type. This gives you as divisors all the powers of 2 from 20 up to 2n−1 - there 
are n of those - plus all those numbers times the prime, except the last - that’s another (n – 1). 
Therefore there are n + (n −1)= 2n – 1 in all. We had these examples: 
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6 = 2(22 −1) . n = 2. Number of proper divisors: 2 x 2 – 1 = 3, giving us our order 3 
arithmogon. 
28 = 22(23 −1) . n = 3. Number of proper divisors: 2 x 3 – 1 = 5, giving us one of our order 5 
arithmogons. 
 
Let’s call these particular sets doubly perfect: perfect because they include all the divisors of 
the total, and perfect because each number divides the sum of the rest. 
 
Euclid told us there’s no biggest prime. And, though we can’t be sure, there’s no reason to 
suppose there’s a biggest Mersenne prime either. If we used the biggest yet discovered to 
make a doubly perfect arithmogon which fitted round the Equator, one side would be no 
longer than the width of the laptop I’m typing on. n = 57,885,161 but N, the number of 
Mersenne primes known, is just 48. 
 
As we’ve seen, a set of divisors of a perfect number is just one kind of division perfect set. Is 
there a general way to find all these sets? One way to make them is to find unit fractions 
which add to make 1. For example: 
 

1= 1
3
+ 1
4
+ 1
6
+ 1
9
+ 1
12

+ 1
18

 

 
Multiplying through by the LCM, which is 36, we have: 36 = 12 + 9 + 6 + 4 + 3 + 2 and each 
of {2, 3, 4, 6, 9, 12} divides the sum of the rest. Why is this? The pattern only emerges if we 
use algebra: 
 

1= 1
a
+ 1
b
+ 1
c
+ ...   

Multiply through by the LCM: 
(abc…) = (bc…) + (ac…) + (ab…) + … 
Now subtract (bc…) from both sides: 
(abc…) – (bc…) = (ac…) + (ab…) + … 
and factorise the left: 
(bc…)(a – 1) = (ac…) + (ab…) + … 
 
Since (bc…) divides the left side of the equation, it must divide the right. But the right is just 
the sum of all the other numbers. 
 
We can model these sets using a mathematical balance.  
 

1= 1
2
+ 1
3
+ 1
9
+ 1
18

 gives us 18 = 9 + 6 + 2 + 1 and the set {1, 2, 6, 9}. 

 
We hang single masses from pegs 1, 2, 6, 9 on the left, then remove the ‘6’ mass, say, … 
 
 



 
 
… and hang it on the same peg on the right. All we need do to balance the beam is add the 
correct number of extra masses, in this case, 1: 
 

 
 
 
This shows that and we would find an equation of the same form for each 
mass. 
 
 
Try other examples from our list on a balance. 
 
Paul Stephenson 
The Magic Mathworks Travelling Circus  
 
 
    
 

 

6 = 1+ 2 + 9
2  


