

The above diagrams show how the model was made. Note how the gradient, measured tangentially, decreases as you move outwards from the axis. The diagram below shows the environment of a point in the centre of a step. Polar coordinates are used. The line $\theta=0$ lies along the step. The plane is horizontal and the z ordinate plotted vertically. As is required for a minimal surface, the principal curvatures are equal and opposite and lie in perpendicular planes, namely the vertical planes for which $\theta=\pi / 4,3 \pi / 4$ respectively.

$$
\theta=\frac{3 \pi}{4}, \frac{d^{2} z}{d r^{2}}=+c
$$

