

17 A

We need the condition for a line to be tangent to an ellipse. We solve $y=m x+c$ with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to give a quadratic in x , then put in the condition for equal roots, obtaining $y=m x \pm \sqrt{b^{2}+a^{2} m^{2}}$. We square this to give a quadratic in m, representing a pair of tangents: $\left(x^{2}-a^{2}\right) m^{2}-2 x y m+\left(y^{2}-b^{2}\right)=0$, then impose the condition for the two tangents to be perpendicular, i.e. for the product of the roots to be -1 , and we have $x^{2}+y^{2}=a^{2}+b^{2}$, the equation of a circle, centre the origin, radius $\sqrt{a^{2}+b^{2}}$.

17 B

We apply Pythagoras' Theorem in this diagram:

The locus is a circle of radius $a+b$ centred on the fixed ellipse. (N.B. θ is the angle measured at a point on the auxiliary circle of each ellipse. We are only using the fact that the angles for the two ellipses remain $\pi / 2$ out of phase.) Note the algebraic symmetry. To read the vertical labels from the horizontal ones we just swap θ for $(\theta+\pi / 2)$. There is an analogy in the plane with two congruent rectangles, sides s and t, set at right angles, where the locus is a square of side $(s+t)$.

17 C

At the start the figure is symmetrical about the common tangent:

Because rolling is a symmetrical relation, it remains so. To that fact we add two properties of the ellipse:
to give this figure:

$4 \theta+2 \phi=2 \pi$,
$2 \theta+\phi=\pi$
$\Rightarrow F_{1} P F_{2}{ }^{\prime}, F_{2} P F_{1}{ }^{\prime}$ straight lines,
with length $s+t=2 a$
$\Rightarrow F_{1}{ }^{\prime}$ describes a circle centre F_{2}, radius $2 a$,
$F_{2}{ }^{\prime}$ describes a circle centre F_{1}
likewise.

