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Definition 
 

A figurate number is a shape consisting of an array of units which pack (circles, squares, hexagons, 

spheres, cubes) representing that particular class of number. For example, an equilateral triangle dissected 

out of a close packing of circles or a right isosceles triangle dissected out of a square grid denotes the 

general triangle number Ὕ ÒÅÐÒÅÓÅÎÔÉÎÇ ÔÈÅ ÅØÐÒÅÓÓÉÏÎ .  

 

The choice of shapes 
 

We use a dozen and a half of the many possible shapes. Our choice follows convention except in five 

cases: the twin trapezoid, the alternate hexagon, the Greek gnomon, the cuboctahedron and the 

icosahedron shell. The ὲ  s-sided polygon number, ὖȟ can be dissected as ί σὝ ὝȢ We have 

used ί σ, the triangle, Ὕ, and ί τȟ the square, Ὓȟ but not ί φȟ the hexagon number, Ὄ . First, by 

virtue of the identity σὝ Ὕ Ὕ ȟ it can be included with the triangle numbers. Second, Ὄ
Ὄ ὅὌ, so we can make no analogy with the centred squares and cubes.  

 

The shapes are of two kinds: single-parameter, e.g. Ὕ, and two-parameter, e.g. Ὕὶȟ. The latter include 

the former as a limiting case. In that example, a triangle is a trapezoid where one of the parallel sides 

vanishes. 

 

Notation 
 

We shall relate numbers using the ófigurate algebraô on the left below. We can always convert to the 

common algebra on the right.  

 

Figurate algebra     Conventional algebra 

 

1, the unit      1 

ὒ , the ὲ  line number    n 

Ὕ , the ὲ  triangle       

Ὓ the ὲ  square     ὲ 

ὕ , the ὲ  odd number                                             ςὲ ρ 
ὋὋȟ, a Greek gnomon    ά ὲ ά ὲ 

Ὕὶȟ, a trapezoid        

ὈὝὶȟ , a twin trapezoid    ά ὲ ά ὲ ὲ  

CὛȟ the ὲ  centred square     ςὲὲ ρ ρ 
ὅὌȟ the ὲ  centred hexagon    σὲὲ ρ ρ   

ὝὩὸȟ the ὲ  tetrahedron      

ὖώὶȟ the ὲ  pyramid      

ὕὧὸȟ the ὲ  octahedron      

ὅȟ the ὲ  cube     ὲ 

ὅὕȟ the ὲ  cuboctahedron     

ὅὅ, the ὲ  centred cube    ςὲ ρ ὲ ὲ ρ 

Ὅ, the ὲ  icosahedron shell    ρπὲ ς 
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We take Î ρ (or some other value according to context). For those shapes with central symmetry, the 

suffix 1 denotes the unit, thus 3 ρȟ etc., as is conventional. Unconventional is naming n a óline 

numberô and giving it the symbol ,ȟ which we do only for consistency. 

 

We use conventional algebra where the figurate form would be clumsy, e.g. óὝ ô, not óὝ ô, óὝ ô, 

not óὝ ô. Sometimes for concision we write ótriangleô for ótriangle numberô, etc. 

 

Housekeeping 

 

We observe dimensional consistency. When we write óὅ Ὓô, we understand that the óὛô is a square 
prism of unit height. When we write óὝὩὸ Ὕ ὝὩὸô, we understand that, again, the óὝô is a prism 

of unit height. An interesting example we shall meet is В Ὥ Ὕ . The sequence of cubes on the 

left has dimension 3 + 1 = 4. This convention accords with the rule that, with each descending diagonal 

on Pascalôs Triangle and those derived from it, the dimension increases by 1. The square of the triangle 

on the right has dimension ς = 4 also. It may be necessary to expand expressions to determine their 

dimension. For example, in [3.7] we meet Ὕ , that is,  

 , which has dimension 4. 

 In [3.8] we meet Ὕ Ὕ , that is, 

 Ὕ Ὕ Ὕ Ὕ Ὕ Ὕ Ὕ Ὕ Ὓὒ,  

which has dimension 7.  

 

We are concerned throughout with the positive integers, the natural numbers. Hence all our equations are 

Diophantine. When we write óÁ Âô we assume a > b. We do not use double implication arrows when 

simply manipulating algebraic expressions. When that manipulation is routine, we leave it to the student 

to complete. 

     

Method 

 

We derive the identities of figurate algebra by examining shapes which result from combining smaller 

ones. The ideal procedure is: 

 

(A) Examine the shape O (B) Derive a figurate identity O  (C) Check by translating into common 

algebra  O(D) Use common algebra to see if the identity generalises further  O(E) If it does, try 

to represent the generalisation graphically. 

 

In only a few cases do we advance through all five stages. 

 

The fundamental relations 

 

Relations between figurate numbers can be of several kinds and involve one or more classes but the most 

productive are of two sorts: 

 

Ἡ ὖ ὖ ὗ .     Example: Ὕ Ὕ ὛȢ 
 

Two consecutive terms in a sequence generate a different shape of the same dimension. 

 

(b) ὖ Ὃ ὖ, or В Ὃ ὖ. Example: Ὓ ὕ Ὓ. 

 

A figure which, added to an existing figure, completes a similar one, is called a gnomon. 

The óGô figure is gnomon to the óPô figure.  The gnomon is one dimension less than the figure. 

(In the text, amongst other types defined, I distinguish this as the parent gnomon.) 
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In both (a) and (b) we add a pair of terms to complete the shape; in (b), this addition can be iterated. 

The gnomonic relation, (b), allows students to prove by induction the results we derive. 

Showing (a) as a solid horizontal arrow and (b) as a dotted vertical arrow, we have these relational grids. 

(The suffices here just label the general form.) 
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We show the relations above on Pascalôs Triangle and number arrays of the Pascal type derived from it. A 

solid arrow represents a transformation of one array into another by the following rule: two cells in the 

position shown at the tail of the arrow sum to one at the head of the arrow. In the example below, two 

tetrahedron numbers sum to a pyramid number. A dotted arrow represents the descent of a diagonal, 

whose sum appears in a cell below and to one side by virtue of the óChristmas stockingô theorem. In the 

example, the first three triangle numbers sum to the third tetrahedron number. 

 

 
 

 

Where applicable, we use this figure to head each chapter, shading in the diagonals which contain 

numbers of the types to be discussed and labelling them with the correct symbols. 

 

On occasion, we show how the numbers appear on the operation table for multiplication. 

 

In the course of our survey we meet some classic óproofs without wordsô. Perhaps these will encourage 

the reader to seek his or her own. 

 

 

The identities listed in this book fall in the section óInteger sumsô in the three books edited by Roger B. 

Nelsen: óProofs without Wordsô, óProofs without Words IIô, óProofs without Words IIIô. 

 

Though our main topic is the identities themselves, we also describe numerical properties where those 

illuminate a relationship. 
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The line, ὒȟ is a strip of length n and unit width. No addition of units creates a shape similar to the 

original, so we cannot find a gnomon to the line. We shall say instead that the unit completes the line, 

preserving an identity of the gnomonic type: 

 

 
   

         ╛▪ ╛▪Ȣ [1.1]  

 

Line numbers account for all positive integers, including necessarily all primes. 
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The odd Number, ╞▪ 
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We represent the odd number, ὕ ςὲ ρ, as a symmetrical L-shape: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This time 2 units complete the figure as shown, and we can write 

 

    ╞▪ ╞▪Ȣ [2.1} 

 

By virtue of the partition indicated by the dotted line, we can also 

write 

 

    ╛▪ ╛▪ ╞▪Ȣ [2.2] 
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      Chapter 3 

 

    The Triangle, ╣▪ 
 

 

 

 
 

 
(A) The triangle and shapes derived from it 

 

(a) The triangle 
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The formula for Ὕȟ ȟ is clear from this canonical figure: 

 

 
 

As the following, equivalent, representations show, we can characterise ὒ as gnomon to a triangle, 

giving the identity 

                     ╣▪ ╛▪ ╣▪. [3.1] 

                         

 
[3.1] serves for a whole series of identities we meet in the text of the form Ὕ ὢ Ὕ. 

 

(b) Trapezoids, ╣►□ȟ▪ 
 

The trapezoid Ὕὶȟ is a sum of consecutive integers. As such it can be characterised as the difference 

between the triangle number Ὕ  and the triangle number Ὕ, ά ὲ, ὲ π. 
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In the final part of this chapter we find triangle numbers which are differences between different pairs of 

triangles. For example, Ὕ Ὕ Ὕ Ὕὶȟ and also Ὕ Ὕ Ὕὶȟ . Therefore trapezoids, which 

include all triangles, do not necessarily represent a number in a unique way. Here are the last two figures: 

 

 
 

 

(c) Twin trapezoids, ╣╣►□ȟ▪ 
 

 
 

 

 

 

We have: 

 

Ὕ Ὕ  . 

 

The brackets are of opposite parity. When ὲ π we have 

the triangle. Since ά ρ, there will always be an odd 

factor, so, excepting ς ρȟ no triangle number can be a 

power of 2. 

More generally, this is true of all Ὕȟ when ά ρ (as it 

is often defined).  

 

When ά ὲ ρ, we have the line number, ὒ . 

 

The figure shows a twin trapezoid. It is a 

trapezoid combined with its reflection in the 

base line.  

 

(i) We can characterise it as shown in blue, as a 

square from which two equal triangles have 

been removed. 

 

(ii) Alternatively, we can characterise it as 

shown in green, as the square Ὓ ,  to which n 

copies of ὕ  have been added: 

 

ὝὝὶȟ  

Ὓ ςὝ Ὓ ὲὕ    
ά ὲ ά ὲ ὲ . 

 

We require ά ὲ ρ, ὲ π. When ὲ π, 
we have a square.  

 

Using characterisation (ii), we see that the 

values are given by ὸ Ὧςὸ ρ as t ranges 

over all integers > 1 and k ranges over all 

integers > 0. 
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On the following chart red squares denote numbers which are not twin trapezoids. Out of the first 60 

natural numbers, 31, just over half, are twin trapezoids. 

 

 

 
 

If we dissect the twin trapezoid into two trapezoids, one of which contains the centre line, we have the 

type (a) relation  

         ╣►□ ȟ▪ ╣►□ȟ▪ ╣╣►□ȟ▪   [3.2] 

 

As there may be different representations of a number as a trapezoid, there may be alternative 

representations as a twin trapezoid. Twin trapezoids include not only all squares, the subject of Chapter 

2, but also all centred hexagon numbers, the subject of Chapter 6. Here is 19 shown in two ways, the 

second of which is a centred hexagon: 

 

 
 

(d) The gnomon and its relatives 

 

We can consider that a gnomon as defined above completes a parent figure. 

Call a gnomon which completes a second generation figure a grandparent. 

Call a gnomon which completes a third generation figure a great-grandparent. 

For the triangle, we can show a grandparent in two ways: 
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Taking advantage of [2.2], we see that the resulting identity is 

 Ὕ ὒ ὒ ╣▪ ╞▪ ╣▪. [3.3] 

 

We can draw the great-grandparent completely enclosing the figure:  

 

 

 
 

(e) Identities involving ╣▪ 
 

The following figure shows different ways to dissect odd squares, the A series; and even squares, the B 

series. 

 

 
 

A1, B1 show the relation       ╣▪ ╣▪ ╢▪. [3.5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have: 

Ὕ ὒ ὒ ὒ   

                     ╣▪ ╛▪ ╣▪ .  [3.4] 

 

The coefficient ó3ô is matched by the order of rotation 

symmetry of the figure. 
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On this multiplication square we show where the triangle numbers appear and how they sum to squares: 

 

 

X 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 

 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 

 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 

 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 

 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 

 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 

 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 

 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 

 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 

 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 

 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 

 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 

 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

 

A2 shows Ὓ Ὓ Ὓ τὝ. We can use [3.1] and [4.3] to break this down: 

                 Ὓ  Ὕ Ὕ Ὕ Ὕ τὝ 

                           Ὕ Ὕ φὝ 

     Ὕ ὒ Ὕ ὒ φὝ 

                           ςὝ ρ φὝ ψὝ ρ,    ╢ ▪ ╣▪ Ȣ[3.6] 

which is shown immediately by A3. 

Note the identity derived in red:     ╣▪ ╣▪ ╣▪ .[3.7] 

 

A1 also shows                        ╣ ▪ ╣▪ ╣▪ .   [3.8] 

The corresponding relation in B1 is                      ╣ ▪ ╣▪ ╣▪ .   [3.9] 

B2 shows the relation: Ὓ ὛὛȟ which generalises to:   

        ╢◄▪ ╢◄╢▪Ȣ   [3.10] 
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Here are alternative figures for [3.8], [3.9] respectively, emphasising symmetry: 

 

 
 

 

Redrawing our canonical figure like this: 

 

 
 

we have the identity       ╛▪ ╢▪ ╣▪. [3.11] 

 

We can derive it algebraically like this: 

 

ὒ Ὓ  

ὒ Ὕ Ὕ   

ὒ Ὕ Ὕ  

Ὕ Ὕ  

ςὝ . We note that ςὝ ὲὲ ρ has been known, following Aristotle, as a pronic number. (Nelsen 

calls it an oblong number.) 

 

The following diagram illustrates the identity  ╣╢▪ ╣╢▪ ╢▪ .    [3.12] 
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We can use either [3.6], [3.7], or [3.8], [3.9] to derive ╣▪ ╣▪ ╣▪ ╢ ▪ . [3.13] 

 

In the following figures we dissect the triangle in a number of different ways, always observing rotation 

symmetry. In the first row we use trapezoids. Note how we triple-count the overlap region in the middle 

case. In the second row we use line numbers but we have notated them as trapezoids one row thick. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

                        ╣ ▪                                        ╣ ▪                                       ╣ ▪  

   


