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Definition 
 

A figurate number is a shape consisting of an array of units which pack (circles, squares, hexagons, 

spheres, cubes) representing that particular class of number. For example, an equilateral triangle dissected 

out of a close packing of circles or a right isosceles triangle dissected out of a square grid denotes the 

general triangle number 𝑇𝑛 representing the expression 
𝑛(𝑛+1)

2
.  

 

The choice of shapes 
 

We use a dozen and a half of the many possible shapes. Our choice follows convention except in five 

cases: the twin trapezoid, the alternate hexagon, the Greek gnomon, the cuboctahedron and the 

icosahedron shell. The 𝑛𝑡ℎ s-sided polygon number, 𝑃𝑠,𝑛 can be dissected as (𝑠 − 3)𝑇𝑛−1 + 𝑇𝑛. We have 

used 𝑠 = 3, the triangle, 𝑇𝑛, and 𝑠 = 4, the square, 𝑆𝑛, but not 𝑠 = 6, the hexagon number, 𝐻𝑛. First, by 

virtue of the identity 3𝑇𝑛−1 + 𝑇𝑛 = 𝑇2𝑛−1, it can be included with the triangle numbers. Second, 𝐻𝑛−1 +
𝐻𝑛 ≠ 𝐶𝐻𝑛, so we can make no analogy with the centred squares and cubes.  

 

The shapes are of two kinds: single-parameter, e.g. 𝑇𝑛, and two-parameter, e.g. 𝑇𝑟𝑚,𝑛. The latter include 

the former as a limiting case. In that example, a triangle is a trapezoid where one of the parallel sides 

vanishes. 

 

Notation 
 

We shall relate numbers using the ‘figurate algebra’ on the left below. We can always convert to the 

common algebra on the right.  

 

Figurate algebra     Conventional algebra 

 

1, the unit      1 

𝐿𝑛 , the 𝑛𝑡ℎ line number    n 

𝑇𝑛 , the 𝑛𝑡ℎ triangle      
𝑛(𝑛+1)

2
 

𝑆𝑛 the 𝑛𝑡ℎ square     𝑛2 

𝑂𝑛, the 𝑛𝑡ℎ odd number                                             2𝑛 − 1 

𝐺𝐺𝑚,𝑛, a Greek gnomon    (𝑚 − 𝑛)(𝑚 + 𝑛) 

𝑇𝑟𝑚,𝑛, a trapezoid     
(𝑚−𝑛)(𝑚+𝑛+1)

2
   

𝐷𝑇𝑟𝑚,𝑛 , a twin trapezoid    (𝑚 − 𝑛)(𝑚 + 𝑛) − 𝑛  

C𝑆𝑛, the 𝑛𝑡ℎ centred square     2𝑛(𝑛 − 1) + 1 

𝐶𝐻𝑛, the 𝑛𝑡ℎ centred hexagon    3𝑛(𝑛 − 1) + 1   

𝑇𝑒𝑡𝑛, the 𝑛𝑡ℎ tetrahedron     
𝑛(𝑛+1)(𝑛+2)

6
 

𝑃𝑦𝑟𝑛, the 𝑛𝑡ℎ pyramid     
𝑛(𝑛+1)(2𝑛+1)

6
 

𝑂𝑐𝑡𝑛, the 𝑛𝑡ℎ octahedron     
𝑛(2𝑛2+1)

3
 

𝐶𝑛, the 𝑛𝑡ℎ cube     𝑛3 

𝐶𝑂𝑛, the 𝑛𝑡ℎ cuboctahedron    
10𝑛3−15𝑛2+11𝑛−3

3
 

𝐶𝐶𝑛, the 𝑛𝑡ℎ centred cube    (2𝑛 − 1)(𝑛2 − 𝑛 + 1) 

𝐼𝑛, the 𝑛𝑡ℎ icosahedron shell    10𝑛2 + 2 
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We take n ≥ 1 (or some other value according to context). For those shapes with central symmetry, the 

suffix 1 denotes the unit, thus S1 = 1, etc., as is conventional. Unconventional is naming n a ‘line 

number’ and giving it the symbol Ln, which we do only for consistency. 

 

We use conventional algebra where the figurate form would be clumsy, e.g. ‘𝑇2𝑛+1’, not ‘𝑇𝑂𝑛+1
’, ‘𝑇2𝑛’, 

not ‘𝑇2𝐿𝑛
’. Sometimes for concision we write ‘triangle’ for ‘triangle number’, etc. 

 

Housekeeping 

 

We observe dimensional consistency. When we write ‘𝐶𝑛 − 𝑆𝑛’, we understand that the ‘𝑆𝑛’ is a square 

prism of unit height. When we write ‘𝑇𝑒𝑡𝑛−1 + 𝑇𝑛 = 𝑇𝑒𝑡𝑛’, we understand that, again, the ‘𝑇𝑛’ is a prism 

of unit height. An interesting example we shall meet is ∑ 𝑖3𝑖=𝑛
𝑖=1 = (𝑇𝑛)2. The sequence of cubes on the 

left has dimension 3 + 1 = 4. This convention accords with the rule that, with each descending diagonal 

on Pascal’s Triangle and those derived from it, the dimension increases by 1. The square of the triangle 

on the right has dimension 22 = 4 also. It may be necessary to expand expressions to determine their 

dimension. For example, in [3.7] we meet 𝑇𝑆𝑛
, that is,  

𝑆𝑛𝑆𝑛+1

2
 , which has dimension 4. 

 In [3.8] we meet (𝑇𝑛)4 − (𝑇𝑛−1)4, that is, 

 [(𝑇𝑛)2 + (𝑇𝑛−1)2](𝑇𝑛 + 𝑇𝑛−1)(𝑇𝑛 − 𝑇𝑛−1) = [(𝑇𝑛)2 + (𝑇𝑛−1)2]𝑆𝑛𝐿𝑛,  

which has dimension 7.  

 

We are concerned throughout with the positive integers, the natural numbers. Hence all our equations are 

Diophantine. When we write ‘(a − b)’ we assume a > b. We do not use double implication arrows when 

simply manipulating algebraic expressions. When that manipulation is routine, we leave it to the student 

to complete. 

     

Method 

 

We derive the identities of figurate algebra by examining shapes which result from combining smaller 

ones. The ideal procedure is: 

 

(A) Examine the shape → (B) Derive a figurate identity → (C) Check by translating into common 

algebra → (D) Use common algebra to see if the identity generalises further → (E) If it does, try 

to represent the generalisation graphically. 

 

In only a few cases do we advance through all five stages. 

 

The fundamental relations 

 

Relations between figurate numbers can be of several kinds and involve one or more classes but the most 

productive are of two sorts: 

 

(𝐚) 𝑃𝑛−1 + 𝑃𝑛 = 𝑄𝑛.     Example: 𝑇𝑛−1 + 𝑇𝑛 = 𝑆𝑛. 
 

Two consecutive terms in a sequence generate a different shape of the same dimension. 

 

(b) 𝑃𝑛−1 + 𝐺𝑛 = 𝑃𝑛, or ∑ 𝐺𝑖
𝑖=𝑛
𝑖=1 = 𝑃𝑛. Example: 𝑆𝑛−1 + 𝑂𝑛 = 𝑆𝑛. 

 

A figure which, added to an existing figure, completes a similar one, is called a gnomon. 

The ‘G’ figure is gnomon to the ‘P’ figure.  The gnomon is one dimension less than the figure. 

(In the text, amongst other types defined, I distinguish this as the parent gnomon.) 
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In both (a) and (b) we add a pair of terms to complete the shape; in (b), this addition can be iterated. 

The gnomonic relation, (b), allows students to prove by induction the results we derive. 

Showing (a) as a solid horizontal arrow and (b) as a dotted vertical arrow, we have these relational grids. 

(The suffices here just label the general form.) 
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We show the relations above on Pascal’s Triangle and number arrays of the Pascal type derived from it. A 

solid arrow represents a transformation of one array into another by the following rule: two cells in the 

position shown at the tail of the arrow sum to one at the head of the arrow. In the example below, two 

tetrahedron numbers sum to a pyramid number. A dotted arrow represents the descent of a diagonal, 

whose sum appears in a cell below and to one side by virtue of the ‘Christmas stocking’ theorem. In the 

example, the first three triangle numbers sum to the third tetrahedron number. 

 

 
 

 

Where applicable, we use this figure to head each chapter, shading in the diagonals which contain 

numbers of the types to be discussed and labelling them with the correct symbols. 

 

On occasion, we show how the numbers appear on the operation table for multiplication. 

 

In the course of our survey we meet some classic ‘proofs without words’. Perhaps these will encourage 

the reader to seek his or her own. 

 

 

The identities listed in this book fall in the section ‘Integer sums’ in the three books edited by Roger B. 

Nelsen: ‘Proofs without Words’, ‘Proofs without Words II’, ‘Proofs without Words III’. 

 

Though our main topic is the identities themselves, we also describe numerical properties where those 

illuminate a relationship. 
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                 Chapter 1 

 

       The Line, 𝑳𝒏 
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The line, 𝐿𝑛, is a strip of length n and unit width. No addition of units creates a shape similar to the 

original, so we cannot find a gnomon to the line. We shall say instead that the unit completes the line, 

preserving an identity of the gnomonic type: 

 

 
   

         𝑳𝒏−𝟏 + 𝟏 = 𝑳𝒏. [1.1]  

 

Line numbers account for all positive integers, including necessarily all primes. 
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     Chapter 2 

 

The odd Number, 𝑶𝒏 
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We represent the odd number, 𝑂𝑛 = 2𝑛 − 1, as a symmetrical L-shape: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This time 2 units complete the figure as shown, and we can write 

 

    𝑶𝒏−𝟏 + 𝟐 = 𝑶𝒏. [2.1} 

 

By virtue of the partition indicated by the dotted line, we can also 

write 

 

    𝑳𝒏−𝟏 + 𝑳𝒏 = 𝑶𝒏. [2.2] 
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      Chapter 3 

 

    The Triangle, 𝑻𝒏 

 

 

 

 
 

 
(A) The triangle and shapes derived from it 

 

(a) The triangle 
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The formula for 𝑇𝑛,
𝑛(𝑛+1)

2
, is clear from this canonical figure: 

 

 
 

As the following, equivalent, representations show, we can characterise 𝐿𝑛 as gnomon to a triangle, 

giving the identity 

                     𝑻𝒏−𝟏 + 𝑳𝒏 = 𝑻𝒏. [3.1] 

                         

 
[3.1] serves for a whole series of identities we meet in the text of the form 𝑇𝑋−1 + 𝑋 = 𝑇𝑋. 

 

(b) Trapezoids, 𝑻𝒓𝒎,𝒏 

 

The trapezoid 𝑇𝑟𝑚,𝑛 is a sum of consecutive integers. As such it can be characterised as the difference 

between the triangle number 𝑇𝑚 and the triangle number 𝑇𝑛, 𝑚 > 𝑛, 𝑛 ≥ 0. 
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In the final part of this chapter we find triangle numbers which are differences between different pairs of 

triangles. For example, 𝑇5 = 𝑇8 − 𝑇6 = 𝑇𝑟8,6 and also 𝑇6 − 𝑇3 = 𝑇𝑟6,3 . Therefore trapezoids, which 

include all triangles, do not necessarily represent a number in a unique way. Here are the last two figures: 

 

 
 

 

(c) Twin trapezoids, 𝑻𝑻𝒓𝒎,𝒏 

 

 
 

 

 

 

We have: 

 

𝑇𝑚 − 𝑇𝑛 =
𝑚(𝑚+1)−𝑛(𝑛+1)

2
=

(𝑚−𝑛)(𝑚+𝑛+1)

2
 . 

 

The brackets are of opposite parity. When 𝑛 = 0 we have 

the triangle. Since 𝑚 ≥ 1, there will always be an odd 

factor, so, excepting 20 = 1, no triangle number can be a 

power of 2. 

More generally, this is true of all 𝑇𝑚,𝑛 when 𝑚 > 1 (as it 

is often defined).  

 

When 𝑚 = 𝑛 + 1, we have the line number, 𝐿𝑚. 

 

The figure shows a twin trapezoid. It is a 

trapezoid combined with its reflection in the 

base line.  

 

(i) We can characterise it as shown in blue, as a 

square from which two equal triangles have 

been removed. 

 

(ii) Alternatively, we can characterise it as 

shown in green, as the square 𝑆𝑚−𝑛,  to which n 

copies of 𝑂𝑚−𝑛 have been added: 

 

𝑇𝑇𝑟𝑚,𝑛  

= 𝑆𝑚 − 2𝑇𝑛 = 𝑆𝑚−𝑛 + 𝑛𝑂𝑚−𝑛   
= (𝑚 + 𝑛)(𝑚 − 𝑛) − 𝑛 . 

 

We require 𝑚 − 𝑛 > 1, 𝑛 ≥ 0. When 𝑛 = 0, 

we have a square.  

 

Using characterisation (ii), we see that the 

values are given by 𝑡2 + 𝑘(2𝑡 − 1) as t ranges 

over all integers > 1 and k ranges over all 

integers > 0. 
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On the following chart red squares denote numbers which are not twin trapezoids. Out of the first 60 

natural numbers, 31, just over half, are twin trapezoids. 

 

 

 
 

If we dissect the twin trapezoid into two trapezoids, one of which contains the centre line, we have the 

type (a) relation  

         𝑻𝒓𝒎−𝟏,𝒏 + 𝑻𝒓𝒎,𝒏 = 𝑻𝑻𝒓𝒎,𝒏   [3.2] 

 

As there may be different representations of a number as a trapezoid, there may be alternative 

representations as a twin trapezoid. Twin trapezoids include not only all squares, the subject of Chapter 

2, but also all centred hexagon numbers, the subject of Chapter 6. Here is 19 shown in two ways, the 

second of which is a centred hexagon: 

 

 
 

(d) The gnomon and its relatives 

 

We can consider that a gnomon as defined above completes a parent figure. 

Call a gnomon which completes a second generation figure a grandparent. 

Call a gnomon which completes a third generation figure a great-grandparent. 

For the triangle, we can show a grandparent in two ways: 
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Taking advantage of [2.2], we see that the resulting identity is 

 𝑇𝑛−2 + (𝐿𝑛−1 + 𝐿𝑛) = 𝑻𝒏−𝟐 + 𝑶𝒏 = 𝑻𝒏. [3.3] 

 

We can draw the great-grandparent completely enclosing the figure:  

 

 

 
 

(e) Identities involving 𝑻𝒏 

 

The following figure shows different ways to dissect odd squares, the A series; and even squares, the B 

series. 

 

 
 

A1, B1 show the relation       𝑻𝒏−𝟏 + 𝑻𝒏 = 𝑺𝒏. [3.5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have: 

𝑇𝑛−3 + (𝐿𝑛−2 + 𝐿𝑛−1 + 𝐿𝑛) =  

                     𝑻𝒏−𝟑 + 𝟑𝑳𝒏−𝟏 = 𝑻𝒏 .  [3.4] 

 

The coefficient ‘3’ is matched by the order of rotation 

symmetry of the figure. 
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On this multiplication square we show where the triangle numbers appear and how they sum to squares: 

 

 

X 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 

 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 

 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 

 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 

 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 

 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 

 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 

 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 

 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 

 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 

 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 

 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 

 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

 

A2 shows 𝑆2𝑛+1 = 𝑆𝑛 + 𝑆𝑛+1 + 4𝑇𝑛. We can use [3.1] and [4.3] to break this down: 

                 𝑆2𝑛+1 = (𝑇𝑛−1 + 𝑇𝑛) + (𝑇𝑛 + 𝑇𝑛+1) + 4𝑇𝑛 

                           = (𝑇𝑛−1 + 𝑇𝑛+1) + 6𝑇𝑛 

     = [𝑇𝑛 − 𝐿𝑛] + [𝑇𝑛 + 𝐿𝑛+1] + 6𝑇𝑛 

                           = 2𝑇𝑛 + 1 + 6𝑇𝑛 = 8𝑇𝑛 + 1,    𝑺𝟐𝒏+𝟏 = 𝟖𝑻𝒏 + 𝟏.[3.6] 

which is shown immediately by A3. 

Note the identity derived in red:     𝑻𝒏−𝟏 + 𝑻𝒏+𝟏 = 𝟐𝑻𝒏 + 𝟏.[3.7] 

 

A1 also shows                        𝑻𝟐𝒏+𝟏 = 𝟑𝑻𝒏 + 𝑻𝒏+𝟏.   [3.8] 

The corresponding relation in B1 is                      𝑻𝟐𝒏 = 𝑻𝒏−𝟏 + 𝟑𝑻𝒏 .   [3.9] 

B2 shows the relation: 𝑆2𝑛 = 𝑆2𝑆𝑛, which generalises to:   

        𝑺𝒕𝒏 = 𝑺𝒕𝑺𝒏.   [3.10] 
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Here are alternative figures for [3.8], [3.9] respectively, emphasising symmetry: 

 

 
 

 

Redrawing our canonical figure like this: 

 

 
 

we have the identity       𝑳𝒏 + 𝑺𝒏 = 𝟐𝑻𝒏. [3.11] 

 

We can derive it algebraically like this: 

 

𝐿𝑛 + 𝑆𝑛  

= 𝐿𝑛 + (𝑇𝑛−1 + 𝑇𝑛)  

= (𝐿𝑛 + 𝑇𝑛−1) + 𝑇𝑛  

= 𝑇𝑛 + 𝑇𝑛  

= 2𝑇𝑛 . We note that 2𝑇𝑛 = 𝑛(𝑛 + 1) has been known, following Aristotle, as a pronic number. (Nelsen 

calls it an oblong number.) 

 

The following diagram illustrates the identity  𝑻𝑺𝒏
− 𝑻𝑺𝒏−𝟏 = 𝑺𝒏 .    [3.12] 
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We can use either [3.6], [3.7], or [3.8], [3.9] to derive 𝑻𝒏−𝟏 + 𝟔𝑻𝒏 + 𝑻𝒏+𝟏 = 𝑺𝟐𝒏+𝟏. [3.13] 

 

In the following figures we dissect the triangle in a number of different ways, always observing rotation 

symmetry. In the first row we use trapezoids. Note how we triple-count the overlap region in the middle 

case. In the second row we use line numbers but we have notated them as trapezoids one row thick. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

                        𝑻𝟑𝒏                                        𝑻𝟑𝒏+𝟏                                      𝑻𝟑𝒏+𝟐 
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𝑻𝟑(𝒏−𝟏) + 𝟑𝑻𝒓𝟑𝒏−𝟏,𝟑𝒏−𝟐  [3.18]    𝑻𝟑𝒏−𝟐 + 𝟑𝑻𝒓𝟑𝒏,𝟑𝒏−𝟏        [3.24]   𝑻𝟑𝒏−𝟏 + 𝟑𝑻𝒓𝟑𝒏+𝟏,𝟑𝒏          [3.30] 

 

𝑻𝟑(𝒏−𝟏) + 𝟑(𝑻𝟑𝒏−𝟏 − 𝑻𝟑𝒏−𝟐) [3.19]   𝑻𝟑𝒏−𝟐 + 𝟑(𝑻𝟑𝒏 − 𝑻𝟑𝒏−𝟏) [𝟑. 𝟐𝟓]  𝑻𝟑𝒏−𝟏 + 𝟑(𝑻𝟑𝒏+𝟏 − 𝑻𝟑𝒏)  [3.31] 

 

 

(f) Square triangle numbers 

 

Of interest is the question ‘When is one triangle number a multiple of another?’ In particular, ‘When is 

one triangle number twice another?’ (The following derivation is due to Mark Bennet, Mathematics Stack 

Exchange 29.12.16.) 

𝑇𝑚 = 2𝑇𝑛  

⟺ 𝑚(𝑚 + 1) = 2𝑛(𝑛 + 1)  

⟺ 4𝑚2 + 4𝑚 = 8𝑛2 + 8𝑛  

⟺ (2𝑚 + 1)2 = 2(2𝑛 + 1)2 − 1 (completing the square),  

a statement of the form 

𝑀2 = 2𝑁2 − 1, a Pell equation, whose solution sets are the pairs of ‘side diameter’ numbers. 

The first (𝑀, 𝑁) pairs are (7, 5), (41, 29), corresponding to the respective (𝑚, 𝑛) pairs (3, 2), (20, 14). 

 

The bonus is that, potentially, we have answers to the question ‘When is a triangle number a square?’ 

because, as the next figure shows, the condition 𝑇𝑘+𝑙 = 𝑆𝑘 is equivalent to the condition 𝑇𝑘−𝑙−1 = 2𝑇𝑙. 

 

We have: 

 

𝑙 = 𝑛 , 
𝑘 = 𝑙 + 𝑚 + 1 = 𝑛 + (𝑚 + 1),  
𝑘 + 𝑙 = 2𝑛 + (𝑚 + 1), 

𝑇2𝑛+(𝑚+1) = 𝑆𝑛+(𝑚+1) . 

 

The (𝑚, 𝑛) pairs above give us respectively 𝑇8 = 𝑆6, 𝑇49 = 𝑆35. 

 

 
     

 

(g) What about cube triangle numbers? 
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The number of triangle numbers which are squares is infinite but there are no cubes > 1. The following 

argument comes from Wolfram MathWorld. 

 

We have: 

 

𝑇𝑛 = 𝐶𝑚, 
𝑛(𝑛+1)

2
= 𝑚3 , 

4𝑛(𝑛 + 1) = 8𝑚3 = (2𝑚)3 , 

(2𝑛 + 1)2 − (2𝑚)3 = 1 . 

By a confirmed conjecture of Catalan, which is therefore a theorem, the only pair of perfect powers 

differing by 1 are 32 and 23 so, uniquely, 𝑛 = 𝑚 = 1. 
 

An aside: The conjecture was proved for all odd values of (2𝑛 + 1). If, in place of (2𝑛 + 1), we specify a 

prime, a, and in place of (2𝑚) we specify a prime c, and, in place of 1, we specify some integer b, the 

Catalan theorem is established as follows.  

 

𝑎2 − 𝑐3 = 𝑏2 ,  

𝑎2 − 𝑏2 = 𝑐3 , 

(𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑐3 , 

The right side can only be rendered as the two unequal factors: c, which must equal the smaller bracket on 

the left, and 𝑐2, which must equal the larger bracket on the left: 

𝑎 − 𝑏 = 𝑐, 

𝑎 + 𝑏 = 𝑐2 . 

Adding, 

2𝑎 = 𝑐(𝑐 + 1). 

The solution 𝑐 = 𝑎 would imply 𝑐 = 1, which is not a prime. 

Hence the solution 𝑐 = 2, 𝑎 = 3, 𝑏 = 1, which is unique. 

 

Note also 𝑎 =
𝑐(𝑐+1)

2
= 𝑇𝑐, the only prime triangle number. 

  

(B) Numerical properties 

 

(a) 

 

The odd number p divides every 𝑝𝑡ℎ integer on the number line. Inspecting the factors in the numerator of 

𝑇𝑛: 

      (1)(2) 

           (2)(3) 

                (3)(4) 

                     ... 

                      (𝑛𝑝 − 1)(𝑛𝑝) 

                                     (𝑛𝑝)(𝑛𝑝 + 1) 

                                       ... 

 

we see: 

(i) that here too the odd number p divides every 𝑝𝑡ℎ integer on the number line, 

(ii) that p divides both 𝑇𝑛𝑝−1 and 𝑇𝑛𝑝, 

(iii) that p divides the second bracket in the numerator of 𝑇𝑛𝑝−1 and the first in the numerator of 𝑇𝑛𝑝. 

 

We can use these three lemmas to solve problems of the following kind. 
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We are given six consecutive triangle numbers: 

 

𝑇𝑎      𝑇𝑎+1   𝑇𝑎+2    𝑇𝑎+3     𝑇𝑎+4    𝑇𝑎+5 

 

 and told that 5 divides 𝑇𝑎 and 𝑇𝑎+4. What can we infer? 

 

If we were only told that 5 divides 𝑇𝑎+4, we would be in doubt as to whether 𝑎 + 4 was of the form  

5𝑛 − 1, in which case 5 would divide 𝑇𝑎+5, or 5𝑛, in which case 5 would divide  𝑇𝑎+3. But, since 5 

divides 𝑇𝑎, and every 5𝑡ℎ triangle number divides by 5, we know that 5 divides 𝑇𝑎+5. 

 

A more elaborate example: 

 

We are given four consecutive triangle numbers under 150 and tasked with identifying them, given the 

following information: 

 

(1) 3 does not divide 𝑇𝑎, 

(2) 3 divides 𝑇𝑎+1, 

(3) 5 divides 𝑇𝑎+2, 

(4) 11 divides 𝑇𝑎+3. 

 

Inferences: 

 

From (1), (2): Since 3 divides 𝑇𝑎+1 but not 𝑇𝑎, it must divide 𝑇𝑎+2. (5) 

From (3), (5): 3 × 5 = 15 divides 𝑇𝑎+2. (6) 

From (4), (6): If 11 divided 𝑇𝑎+2 as well as 𝑇𝑎+3, 𝑇𝑎+2 would be ≥ 11 × 15,  

which is > 150, so it does not. (7) 

From (4), (7): since 11 divides 𝑇𝑎+3 but not 𝑇𝑎+2, it must divide 𝑇𝑎+4. Furthermore, it must be a divisor 

of the smaller bracket in the expression for 𝑇𝑎+4, 
(𝑎+4)(𝑎+5)

2
. 

We have: 𝑎 + 4 = 11𝑘. The smallest solution, 𝑎 = 7, gives a value for 𝑇𝑎+4 of 66, < 150. 

The next, 𝑎 = 18, gives a value > 150. 

Therefore 𝑇𝑎+4 = 66 =
11×12

2
, and we can derive from it the values required: 

 𝑇𝑎+3 =
10×11

2
= 55, 

𝑇𝑎+2 =
9×10

2
= 45, 

𝑇𝑎+1 =
8×9

2
= 36,  

𝑇𝑎 =
7×8

2
= 28 . 

 

(b)  

 

Continuing our analysis of the patterns revealed in (a), it’s interesting to see how, when considering 

particular primes, the prime factorisation patterns of the sequence of triangle numbers compare with those 

of the natural numbers. We can think of the comparison in two ways: 

 

(i) the natural numbers sampled at positions 1, 3, 6, 10, ... : 

 

 

(ii) the consequences of the formula 
𝑛(𝑛+1)

2
 for the individual triangle numbers. 
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The figures following show how the powers respectively of 2, 3 and 5 appear. Notice: 

 

(i) Compared with the factors of the natural numbers, every entry for an exponent > 0 is duplicated in the 

triangle numbers.  

(ii) For an odd prime p, the number of consecutive entries for the exponent 0 is (𝑝 − 1) for the natural 

numbers, (𝑝 − 2) for the triangle numbers. 

 

 

 
 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It's instructive to draw diagrams 

showing sequences of partitions of 

the triangle numbers into two parts: 

𝑇𝑝 = 𝑎𝑇𝑞 + 𝑏𝑇𝑟 , 𝑞 > 𝑟, 𝑎 > 𝑏 ≥ 0.   

This equation serves for a number of 

the identities we’ve met. But we have 

chosen in particular: 

 

𝑇2𝑛 = 3𝑇𝑛 + 𝑇𝑛−1 [3.9] and  

𝑇2𝑛+1 = 3𝑇𝑛 + 𝑇𝑛+1 [3.8]. 

 

In an equilateral triangle of side 

length p, we enter p at the apex, q at 

the left base vertex, r at the right base 

vertex, and the coefficients a and b 

inside those.  

q and r in turn become the apices of 

new triangles of the same kind. The 

process terminates when the last q 

value is 1.  
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This dichotomy will always be possible since every triangle number suffix is either odd or even.   

 

In the figure for 𝑇9 below left the unit coefficients are not marked. We have computed the total number of 

𝑇1s by multiplying the relevant coefficients, whose total must equal 𝑇9 = 45. The figure below right 

makes the point that the position of the coefficient ‘3’ occurs on the left when the T suffix is even, on the 

right when it is odd. 

 

 
We need to show (see next figure) that the segment AA’ does not cross BB’. This is equivalent to showing 

that 𝑎 + 𝑏 + 𝑐 + ⋯  ≤ 𝑠. 

 

Since 𝑝 ≤
𝑙+1

2
, 𝑎 = 𝑝 − 1 ≤

𝑙−1

2
=

𝑠+1

2
 . 

Since 𝑞 ≤
𝑝+1

2
, 𝑏 = 𝑞 − 1 ≤

𝑝−1

2
=

𝑠+1

4
 . 

Since 𝑟 ≤
𝑞+1

2
, 𝑐 = 𝑟 − 1 ≤

𝑞−1

2
=

𝑠+1

8
 . 

...                     ...                              ... . 

 

Thus 𝑎 + 𝑏 + 𝑐 + ⋯ ≤ (
1

2
+

1

4
+

1

8
+ ⋯ ) (𝑠 + 1) = 𝑠 + 1. 

 

Now, our convention of putting the greater of q, r, namely q, on the left, ensures that, along a given edge 

like BB’, we cannot encounter two consecutive cases where the ‘≤’ sign resolves to an ‘=’ sign. Thus, for 

≥ 2 cases (the minimum), 𝑎 + 𝑏 + 𝑐 + ⋯ < 𝑠 + 1, i.e. 𝑎 + 𝑏 + 𝑐 + ⋯ ≤ 𝑠, as required. 

 

 



 25 
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Since a triangle number is either of the form 3𝑛 or 3𝑛 + 1, descending from a given apex p all the way 

down to the terminating vertices, those with apex value 1, the total number of those vertices must be a 

number of one of the two kinds since 𝑇𝑛 = 𝑇𝑛𝑇1. 

 

A more compact representation of [3.8] and [3.9] partitions an equilateral triangle dot figure iteratively. 

Here for example is 𝑇17: 

 

 

Because the tree is a 

dichotomy, descending from 

any given apex p, the number 

of daughter triangles goes up 

as a power of 2. For example, 

starting with 𝑝 = 100 , we 

have the breakdown and totals 

shown in the table below. 

Observing the structure, which distributes the coefficient 3 

to one side, 1 to the other, the true number of daughter 

triangles goes up as a power of 22.  

 

If we define daughter triangles to the triangle with apex 

number p as belonging to the 1𝑠𝑡 generation, granddaughter 

triangles as belonging to the 2𝑛𝑑, and so on, the total value 

of all triangle numbers represented by triangle apices of the 

same generation, is that of the apex triangle number, 𝑇𝑝. So 

we have the equalities of the kind shown in the third 

column of the table below. 

True number of 

triangles 

Breakdown of  

apex values 

Breakdown of 

triangle 

number 

totals 

20 1(100) 𝑇100 = 

22 3(50) 1(49) 3𝑇50 + 𝑇49 = 

24 10(25) 6(24)        etc. 

26 10(13) 48(12) 6(11)        etc. 

28 10(7) 180(6) 66(5)        etc. 

.                              .                                   .                         . 

.                              .                                   .                         . 

.                              .                                   .                         . 

Number 

of  

triangles 

in the 

triangle 

-gram 

Breakdown 

20 1(100) 

21 1(50)  1(49) 

22 2(25)  2(24) 

23 2(13)  4(12)  2(11) 

24 2(7)  8(6)  6(5) 

.                 .                                 . 

.                 .                                 . 

.                 .                                 . 
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(d) Though we shall not prove this, with triangle numbers, every equality is a special case of an identity 

or a set of nested identities. Taking [3.12] as our example, which is just a special case of [3.1], we have, 

schematically:  

 

 

 

𝑇𝑆𝑛
=                            𝑆𝑛                                      + 𝑇𝑆𝑛−1                  𝑇9 = 𝑆3 + 𝑇8 

  

                                [3.5] 

                      𝑇𝑛−1                 𝑇𝑛 

 

                           𝒏 = 𝟐𝒌 + 𝟏 

                      𝑇2𝑘                   𝑇2𝑘+1                                                𝑇9 = 𝑇2 + 𝑇3 + 𝑇8                                               

    

                   [3.9]                 [3.8] 

     

               𝑇𝑘−1     3𝑇𝑘       3𝑇𝑘         𝑇𝑘+1 

 

                                𝒌 = 𝟏 

   

                (𝑇0)     3𝑇1        3𝑇1           𝑇2 

 

                    [3.9]          (𝑇0)   3𝑇1 

            

                      𝑇2                [3.9] 

 

                                            𝑇2 

                       

                                      3𝑇2                                                             𝑇9 = 3𝑇2 + 𝑇8                                             

                                  

In a special case of identity (ii) in part (b), 𝑎 = 𝑏 = 1, so that  𝑇𝑝 = 𝑇𝑞 + 𝑇𝑟. Note that the right side is 

symmetrical in q and r. We can form chains in this manner: 

 

 
 

If, in our equation 𝑇𝑝 = 𝑇𝑞 + 𝑇𝑟, and we write 𝑝 as 𝑞 + 𝑛, 𝑇𝑟 represents the difference between two 

triangle numbers n positions apart in the sequence of triangle numbers. We have: 

 

𝑇𝑟 =
𝑟(𝑟+1)

2
=

(𝑞+𝑛)(𝑞+𝑛+1)−𝑞(𝑞+1)

2
=

𝑛(𝑛+2𝑞+1)

2
 . 

 

Here are the first few examples we encounter as 𝑛, 𝑞 range over the natural numbers while satisfying the 

above identity:  

The triangle numbers between the lines 

appear as trapezoids.  

 

The algebraic symmetry allows us to write 

the same equality in two ways, for example: 

 

𝑇5 + 𝑇𝑟8,5 = 𝑇8, 

𝑇6 + 𝑇𝑟8,6 = 𝑇8. 
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(e) 

 

If 𝑇𝑝 = 𝑇𝑞 + 𝑇𝑟 , or in graphic form, 𝑃 = 𝑄 + 𝑅, we can ask if there’s a general method for dissecting one 

side of the equation into the other. This will not necessarily be the most economic dissection in terms of 

the number of pieces but it will be universally applicable. The following iterative procedure fits the bill. 

We use the ‘staircase’ forms. 

 

1. Lay R over Q so that the resulting stepped 

 hypotenuse corresponds to that of P . 

 

2a. Make cut C1, producing two pieces 

from R: 𝑅𝑓 (f for ‘fixed’) and 𝑅𝑚 

m for ‘moveable’). 

 

2b. Give 𝑅𝑚  a half-turn about 𝑂1. 

 

3a. Make cut C2, producing two pieces 

From 𝑅𝑚: 𝑅𝑚𝑓, 𝑅𝑚𝑚. 

3.b. Give 𝑅𝑚𝑚 a half-turn about 𝑂2. 

 

The algebraic symmetry tells us that  

we can swap Q and R:  

 

 

 

 

 

 

 

 

In the example illustrated, this marks the end of the process: the P outline is filled by pieces constituting 

Q and R. But in the general case, we must repeat steps a and b until this is achieved. Here for example are 

the final stages in the case 𝑝 = 23, 𝑞 = 20, 𝑟 = 11: 
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The validity of the method rests on the fact that, by means of half-turns about vertices or edge midpoints 

of a square lattice, a given square A can be moved to coincide with a chosen square B anywhere in the 

plane. 

 

(f) 

 

An investigation worth pursuing is the analogy between the Pythagorean triples, (𝑎, 𝑏, 𝑐), where the 

general term x represents 𝑥2 in the identity, and the triangle triples (𝑝, 𝑞, 𝑟), where x represents 
𝑥(𝑥+1)

2
.  

 

This figure characterises the distinction: 

 

 
 

In the same way we can class cases among the Pythagorean triples, e.g. those where the hypotenuse and a 

leg differ by 1, we can class cases among the triangles, e.g. those distinguished by an n value of 1 on the 

chart in part (e). 
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a         b       c:  

𝑆𝑟      𝑆2𝑏    𝑆2𝑏+1    For odd 𝑟 > 1, put 𝑏 =
𝑟2−1

4
. Then 𝑆𝑟2+1

2

= 𝑆𝑟2−1

2

+ 𝑆𝑟. 

r         q       p           For 𝑟 > 1, put 𝑞 = 𝑇𝑟 − 1. Then 𝑇𝑇𝑟
= 𝑇𝑇𝑟−1 + 𝑇𝑟. 

𝑇𝑟      𝑇𝑞     𝑇𝑞+1 

 

Whereas there is one set of parametric equations which produces all Pythagorean triples, for triangles we 

need a separate set for each type, requiring four parameters in all. Failing that, here is a nomogram we can 

use. 

 

With the two solid lines fixed, we choose a position for the dashed line and adjust the two dotted lines 

until the number of dots in the parallelogram equals the number in the small triangle (shown by the big 

dots in the figure beneath). We then read off the number of dots on the sides of the smaller triangles, x 

and y, and of the large triangle, z, to give a solution of 𝑇𝑥 + 𝑇𝑦 = 𝑇𝑧. 

 

 

Here’s why it works. 

 

Readers will see that the task in figurate 

terms is to find a gnomon to a triangle 

(the large trapezium) which is itself 

triangular. We must be able to dissect this 

trapezium into a smaller trapezium and a 

parallelogram, and dissect the 

parallelogram into a triangle to which the 

smaller trapezium is a gnomon. This is 

what the nomogram achieves. 

 

 

We have x = u + v, y  = u + w, z = u + v + w. By taking every u value and every factorisation 𝑇𝑢 = 𝑣𝑤, 

we generate all possible solutions. The figure below shows an analogous construction for the equation 

𝑆𝑥 + 𝑆𝑦 = 𝑆𝑧, where 𝑆𝑛 is the nth square number, 𝑛2. Solutions are restricted by the Pythagorean 

condition, namely, the gnomon to a square 𝑆𝑥 is itself a square 𝑆𝑦 if and only if  x, y form the shorter 

sides of a right triangle with integral hypotenuse z. In the triangular case by contrast we have a range of 

obtuse-angled triangles. 
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(g) Now consider for comparison sequences of three consecutive numbers of each type, squares and 

triangles.  

 

We can show that three consecutive squares never sum to a square. Let 𝑆𝑛−1 + 𝑆𝑛 + 𝑆𝑛+1 = 𝑆𝑎. 

Forming a quadratic equation in a leads to: 

 

𝑎2 = 3𝑛2 + 2 = 2 (mod 3). 

But 𝑎2 = 0 or 1 (mod 3). 

Therefore the equation has no solution in integers. 

   

Certainly 3 consecutive triangles can sum to a square: 𝑇5 + 𝑇6 + 𝑇7 = 𝑆8. Indeed, it turns out there is an 

infinite number of such sets. The squares, 𝑎𝑛, are generated by this recurrence relation:  

𝑎𝑛 = 10𝑎𝑛−2 − 𝑎𝑛−4 with starting values 𝑎1 = 1, 𝑎2 = 2, 𝑎3 = 8, 𝑎4 = 19. We can use [3.7] in the form 

𝑇𝑟 + 𝑇𝑟+1 + 𝑇𝑟+2 = 3𝑇𝑟+1 + 1 to find the triangles. For example: 

 192 = 361 = 3(120) + 1. 

120 =
𝑠(𝑠+1)

2
,  

𝑠𝑠 + 𝑠 − 240 = 0, 

𝑠 =
−1+√1+960

2
= 15, 

giving 𝑇14 + 𝑇15 + 𝑇16 = 𝑆19. 
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We can find an infinite number of sets of three consecutive triangles which sum to a triangle. Here are 

the smallest two: 

 

𝑇1 + 𝑇2 + 𝑇3 = 3𝑇2 + 1 = 𝑇4 , 

𝑇8 + 𝑇9 + 𝑇10 = 3𝑇9 + 1 = 𝑇16 . 

 

How do we find such sets, 𝑇𝑟 + 𝑇𝑟+1 + 𝑇𝑟+2 = 𝑇𝑛? [1] 

 

In the following figure we have drawn a triangle for 𝑇𝑛 containing 𝑇𝑟, 𝑇𝑟+1, 𝑇𝑟+2. For equality, it must be 

the case that the regions of overlap sum to the central uncovered region. We can find the dimensions of 

these from the figure, leading to the reduced equation 𝑇2𝑟+1−𝑛 + 𝑇2𝑟+2−𝑛 + 𝑇2𝑟+3−𝑛 = 𝑇2𝑛−3𝑟−4. [2]  

We have in effect converted a two-dimensional problem to a 1-dimensional one. 

 

 
Here is a table of the first few (𝑟, 𝑛) pairs generated this way. 

 

 

𝑟𝑝 𝑛𝑝 𝑟𝑝+1 𝑛𝑝+1 

1 4 8 16 

8 16 34 61 

34 61 131 229 

131 229 493 856 

 

(h) The triangle numbers modulo 3 

 

We have: 

 

𝑇3𝑛 = 0 (mod 3), 

𝑇3𝑛+1 = 𝑇3𝑛 + (3𝑛 + 1) = 1 (mod 3), 

Entering new values in the 

suffix of a term in [2], we obtain 

the old value as the suffix of the 

corresponding term in [1]: 

 

 we have: 

 
(𝟏)𝑟𝑝 = 2𝑟𝑝+1 + 1 − 𝑛𝑝+1, 

(2) 𝑛𝑝 = 2𝑛𝑝+1 − 3𝑟𝑝+1 − 4. 

 

Combining the two equations, 

we have: 

 

𝑟𝑝+1 = 𝑛𝑝 + 2𝑟𝑝 + 2, 

𝑛𝑝+1 = 2𝑛𝑝 + 3𝑟𝑝 + 5. 

 

With starting values  

𝑟0 = 1, 𝑛0 = 4 ,  
this is the relation we require. 

 

Using [3.23], we  obtain the following equation, which the values 

produced by the recurrence relation must satisfy: 

𝑇3𝑘+4 = 3𝑇𝑙 − 2. 

So we have for example these specific equalities: 

 𝑇7 = 3𝑇4 − 2, 

𝑇28 = 3𝑇16 − 2. 
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𝑇3𝑛+2 = 𝑇3𝑛+1 + (3𝑛 + 2) = 0 (mod 3). 

 

So, modulo 3, the numbers just cycle like this: 1 0 0 1 0 0 1 0 0 ... 

 

We see this also from their figurate representation. Either there is a dot in the centre or there is not: 

 

 
(C)  Algebraic properties 

 

The form of the defining equation, 𝑇𝑛 =
𝑛(𝑛+1)

2
, gives rise to interesting properties. 

(i)  We have: 𝑛(𝑛 + 1) = 2𝑇𝑛, 𝑛2 + 𝑛 − 2𝑇𝑛 = 0, 𝑛 =
−1+√8𝑇𝑛+1

2
. 𝑇𝑛 will be a triangle number iff the 

expression under the square root sign is a square. (We recognise it from [3.6].) 

 

(ii)  Since n and (𝑛 + 1) are consecutive integers, they share no prime factors. If we are given a 

reasonably small  𝑇𝑛, say  120 = 23 × 3 × 5 so that 2𝑇𝑛 = 24 × 3 × 5, we can easily sort the products so 

that one exceeds the other by 1:    3 × 5 = 24 − 1;    𝑛 = 15.  If, on the other hand, 𝑇𝑛 is large, we must 

use (i). 

 

(iii)  Chaining the triangle numbers in a product so that the numerator brackets run consecutively, we 

have  

(2𝑛)! = 2𝑛 ∏ 𝑇2𝑖−1
𝑖=𝑛
𝑖=1  (A) and  

(2𝑛 + 1)! = 2𝑛 ∏ 𝑇2𝑖
𝑖=𝑛
𝑖=1  (B). 

Dividing (B) by (A), we have 
(2𝑛+1)!

(2𝑛)!
= 2𝑛 + 1 = ∏

𝑇2𝑖

𝑇2𝑖−1

𝑖=𝑛
𝑖=1 .  

To see why the product telescopes, we only have to spell out the product and observe the diagonal pattern 

of cancellation: 

 
𝑇2

𝑇1
×

𝑇4

𝑇3
×

𝑇6

𝑇5
× … =

2 × 3

1 × 2
×

4 × 5

3 × 4
×

6 × 7

5 × 6
× … ×

2𝑛 × (2𝑛 + 1)

(2𝑛 − 1) × 2𝑛
= 2𝑛 + 1. 

 

The product p then is a linear function of the number of terms, n:  𝑝(𝑛) = 2𝑛 + 1. Not so the 𝑛𝑡ℎ term, 
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𝑞(𝑛) =
2𝑛+1

2𝑛−1
. Compare their respective graphs. 𝑞(𝑛) → 1 as 𝑛 → ∞. 

 

 
  

The pronic number s = 𝑛(𝑛 + 1) is already near to a square. What happens if we take the square root? 

We have  √𝑠 = √(𝑛 +
1

2
)2 −

1

4
= 𝑛 + 𝑡. As 𝑛 → ∞, 𝑡 →

1

2
. The convergence is rapid:  
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Given a set of integers spanning a range between squares which contains a pronic number p, we take 

square roots (here shown to 3 decimal places). (𝑝 + 1) is the first number for which 𝑡 >
1

2
 , identifying p. 

 

 
 

We can show this as follows. 

 

𝑠0 = 𝑘2, 𝑠1, 𝑠2, … . 𝑠2𝑘−1, 𝑠2𝑘, 𝑠2𝑘+1 = (𝑘 + 1)2
  is a sequence of consecutive positive integers. For a 

particular consecutive pair, 𝑠𝑛, 𝑠𝑛+1, 

 

√𝑠𝑛 = 𝑘 + 𝑡𝑛, 

√𝑠𝑛+1 = 𝑘 + 𝑡𝑛+1, 

 

where k is the integer part, 𝑡𝑛, 𝑡𝑛+1 the respective fractional parts of √𝑠𝑛 , √𝑠𝑛+1. 

If 𝑡𝑛 <
1

2
, 𝑡𝑛+1 >

1

2 
, show that 𝑠𝑛 = 𝑛(𝑛 + 1). 

 

Between 𝑠0 and 𝑠2𝑘+1 there will be a single number 𝑠𝑢 = 𝑘(𝑘 + 1). 

√𝑠𝑢 = √(𝑘 +
1

2
)

2

−
1

4
= (𝑘 +

1

2
) − 𝑡𝑥 = 𝑘 + (

1

2
− 𝑡𝑥), 

√𝑠𝑢+1 = √(𝑘 +
1

2
)

2

+
3

4
= (𝑘 +

1

2
) + 𝑡𝑦 = 𝑘 + (

1

2
+ 𝑡𝑦). 

 
1

2
− 𝑡𝑥 = 𝑡𝑢 <

1

2
, 

1

2
+ 𝑡𝑦 = 𝑡𝑢+1 >

1

2
. 

 

For all the integers < 𝑠𝑢 the t value will be < 
1

2
 . 

For all the integers > 𝑠𝑢 the t value will be >
1

2
. 

 

This identifies u uniquely as n. 

 

The result follows. 
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     Chapter 4 

 

 The Square, 𝑺𝒏 
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(a) Forming the square, 𝑺𝒏 

 

 
 

The sum of the first n consecutive odd numbers is therefore the square 𝑆𝑛. But other runs of consecutive 

odd numbers can also be squares. Where this is the case, the square is that of a term in a Pythagorean 

triple: 

 

 
 

We can show the run of odd numbers comprising the square in two ways by virtue of the commutative 

law, here as 7 + 9 or as 1 + 3 + 5 + 7. (In general, a square might be thus represented in more than two 

ways. For example, 122 can be shown as a run of odd numbers in 5 ways. By contrast, if p is prime, one 

can show that only the sequence starting with 1 can sum to 𝑝2.) 

 

(b) Greek gnomons, 𝑮𝑮𝒎,𝒏 

 

We shall call a sum of one or more consecutive odd numbers a Greek gnomon, 𝐺𝐺𝑚,𝑛. Particular 

examples (variously arranged) are the (parent) gnomon, grandparent and great grandparent gnomons 

defined below. As illustrated above, this is a difference of squares, 𝑆𝑚 − 𝑆𝑛 = (𝑚 + 𝑛)(𝑚 − 𝑛), 𝑚 > 𝑛. 
(We include the case 𝑚 − 𝑛 = 1. ) We can also show the Greek gnomon as a rectangle: 

 

The figure shows that we can characterise the 

odd number 𝑂𝑛 as gnomon to a square, giving 

the identity 

  

  

  

                        

𝑺𝒏−𝟏 + 𝑶𝒏 = 𝑺𝒏. [4.1] 
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The brackets have the same parity. Numbers which are the product of 2 and an odd factor cannot 

therefore be Greek gnomons. These invalid numbers comprise the arithmetic sequence 2, 6, 10, ..., 

2 𝑂𝑛, … . The following algebra shows that this sequence includes all sums of two odd squares: 

 

(2𝑎 + 1)2 + (2𝑏 + 1)2  

= 4(𝑎2 + 𝑏2 + 𝑎 + 𝑏) + 2  

= 2[2(𝑎2 + 𝑏2 + 𝑎 + 𝑏) + 1]  
= 2(2𝑘 + 1) . 

 

Thus two odd squares cannot sum to a Greek gnomon. We can show graphically that the sum of two odd 

squares takes the form 2(2𝑘 + 1): 
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𝐺𝐺𝑎+2𝑘,𝑎 divides by 4k. This is clear from the algebra: 𝐺𝐺𝑎+2𝑘,𝑎 = 4𝑘(𝑎 + 𝑘), also from the fact that the 

mean of the 2𝑘 consecutive odd numbers added is an even number, so the total must have factor 4.  

 

As is also clear from the original figure, we can nest thick gnomons, so that, with 𝑙 > 𝑚 > 𝑛: 

 

        𝑮𝑮𝒍,𝒎 + 𝑮𝑮𝒎,𝒏 = 𝑮𝑮𝒍,𝒏. [4.2] 

(c) The gnomon and its relatives 

 

As with the triangle, we can identify grandparents and great grandparents. 

 

For the square, the grandparent can already be drawn to enclose the figure: 

 

 
 

The grandparent relation is:      𝑺𝒏−𝟐 + 𝟒𝑳𝒏−𝟏 = 𝑺𝒏. [4.3] 

 

As in the triangular case, note the rotation symmetry. 

 

The great-grandparent relation is:     𝑺𝒏−𝟑 + 𝟑𝑶𝒏−𝟏 = 𝑺𝒏. [4.4] 

 

If we move the central square to the bottom left corner and pack the gnomons from upper right, 𝑂𝑛−1 

appears as the mean of three consecutive odd numbers, whose total therefore is a multiple of 3. (Compare 

the case of [3.4].) 

 

(d) Nested gnomons 

 

The following dissection represents the identity  

𝒌𝑺𝒏 + 𝑺𝒏+𝒌+𝟏 = (𝒌 + 𝟏)𝑺𝒏+𝟏 + 𝟐𝑻𝒌. [4.5] 
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        Chapter 5 

 

 The Centred Square, 𝑪𝑺𝒏  
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(a) Forming 𝑪𝑺𝒏 

 

The centred square is the sum of two consecutive squares: 

 

 
1. We begin with our squares. 

2. We divide each into consecutive triangles, so we have: 

 

        𝑺𝒏−𝟏 + 𝑺𝒏 =  𝑻𝒏−𝟐 + 𝟐𝑻𝒏−𝟏 + 𝑻𝒏.  [5.1] 

 

We slide the green triangle bottom right to top left, and the lilac triangle bottom left to top right. We then 

make the cuts shown by the dotted lines.  

 

3. The net result is the ‘centred square’ number,  𝑪𝑺𝒏 = 𝑺𝒏−𝟏 + 𝑺𝒏 = 𝟒𝑻𝒏−𝟏 + 𝟏.  [5.2] 

 

The next figure shows part of a tiled floor with a checkerboard pattern. If you turn your head 45° to the 

vertical, the two consecutive squares reveal themselves. Alongside, we see what happens when we 

subtract [2.2] from [3.6] (with change of suffices): 𝑺𝟐𝒏−𝟏 − 𝑪𝑺𝒏 = 𝟒𝑻𝒏−𝟏.   [5.3] 
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(b) Differences of centred squares 

 

(i) From the defining algebra, we have: 

 

𝐶𝑆𝑎 − 𝐶𝑆𝑏 = 2(𝑎 − 𝑏)(𝑎 + 𝑏 − 1).  

 

The brackets have opposite parity, so one of them is positive and the whole expression therefore has a 

factor 4. This means that, if the right side of the equation is a perfect power, for example a square, the 

square will be that of an even number.  

 

We can say more.  

 

2(𝑎 − 𝑏)(𝑎 + 𝑏 − 1) = 𝑐2  

⟹ (𝑎 + 𝑏 − 1) = 2(𝑎 − 𝑏) (
𝑝

𝑞
)

2

. 

 

Here is a selection of values: 

 
𝑝

𝑞
 a b c 

2 5 4 4 

1 5 2 6 

3 10 9 6 

1 11 4 14 
5

2
 

14 12 10 

 

The equivalent formula for 𝐶𝐻𝑎 − 𝐶𝐻𝑏 = 𝑆𝑐 differs only in the substitution of the coefficient 3 for 2. 

The equivalent table starts: 

 

 
𝑝

𝑞
 a b c 

2 7 6 6 
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4

3
 

10 7 12 

8

3
 

34 31 24 

 

 

(ii) In Chapter 8, section (c) (iii) we meet Dostor’s identity, the second case of which is: 

 

𝑆10 + 𝑆11 + 𝑆12 = 𝑆13 + 𝑆14. 

 

Grouping terms, we have: 

  

𝐶𝑆14 − 𝐶𝑆11 = 𝑆12, 

 𝐶𝑆14 − 𝐶𝑆12 = 𝑆10. (This is the last example in the table above.) 

 

(c) The centred square as a difference of two squares 

 

We write 𝐶𝑆𝑛 = (
𝐶𝑆𝑛+1

2
)

2

− (
𝐶𝑆𝑛−1

2
)

2

. 

 

An instance is 𝐶𝑆3 = 𝑆7 − 𝑆6. Rearranging terms, we have 𝑆2 + 𝑆3 + 𝑆6 = 𝑆7. The standard house brick 

has edges in the ratio 2 : 3 : 6. The equation tells us that, with a unit of length so defined, the space 

diagonal of a brick has integer length, 7.  

  

 

 

 

 

 

 

 

 

 

 

 

(d) Identities involving centred squares and other shapes 

 

In the next figure we combine centred squares.  
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As shown in the main figure,             𝑪𝑺𝟑𝒏 = 𝑪𝑺𝒏+𝟏 + 𝟖(𝑪𝑺𝒏 + 𝑳𝒏 − 𝟏).   [5.4] 

 

The upper inset figure shows that          𝑪𝑺𝒏 + 𝑳𝒏 − 𝟏 = 𝒏(𝟐𝒏 − 𝟏) = 𝑻𝟐𝒏−𝟏.  [5.5] 

 

Combining [5.4] and [5.5],            𝑪𝑺𝟑𝒏 = 𝑪𝑺𝒏+𝟏 + 𝟖𝑻𝟐𝒏−𝟏. [5.6] 

 

The lower inset figure combines results [5.2] and [5.3]. 

               

From [3.6] and [5.6]:          𝑪𝑺𝟑𝒏 = 𝑪𝑺𝒏+𝟏 + 𝑺𝟒𝒏−𝟏 − 𝟏. [5.7] 

 

From [5.2] and [5.6]:                𝑻𝟑𝒏+𝟐 = 𝑻𝒏+𝟏 + 𝟐𝑻𝟐𝒏+𝟏. [5.8] 

 

an identity purely in terms of triangle numbers. 

 

Here is a figure representing [5.8]: 
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Here is the same with a staircase representation. Alongside we use [3.8] to dissect the rectangle. 

 

 
 

From [5.2] we can also break down [5.6] into triangles: 

 

                                              𝑻𝟑𝒏+𝟏 + 𝟐𝑻𝟑𝒏+𝟐 + 𝑻𝟑𝒏+𝟑 = 𝟐𝟓 𝑻𝒏 + 𝟏𝟎 𝑻𝒏+𝟏 + 𝑻𝒏+𝟐 .  [5.9] 

 

From [3.6] we have  8𝑇𝑛−1 + 1 = 𝑆2𝑛−1, 

From [5.2] we have  4𝑇𝑛−1 + 1 = 𝐶𝑆𝑛, 

Whence                                                                                      𝟐𝑪𝑺𝒏 = 𝑺𝟐𝒏−𝟏 + 𝟏.  [5.10] 

 

The following figure shows this. 
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The blue and white squares represent 𝐶𝑆𝑛. Each square is duplicated by a circle top left. The total of 

squares and circles is therefore 2𝐶𝑆𝑛. Each zig-zag line connects (2𝑛 − 1) objects. Moving top left to 

bottom right, the (2𝑛 − 1)𝑡ℎ zigzag would require the (𝑛 − 1) dashed circles. These correspond to n 

squares on the same diagonal, thereby demonstrating the identity. 

 

(e) The centred square to different moduli 

 

(i) Odd prime moduli  

 

In Chapter 3, section (h) we see how the triangle numbers cycle modulo 3. 

Since 𝑆𝑛 = 𝑇𝑛−1 + 𝑇𝑛 and 𝐶𝑆𝑛 = 𝑆𝑛−1 + 𝑆𝑛, we can find the corresponding cycles for 𝑆𝑛 and 𝐶𝑆𝑛 by 

successively adding consecutive pairs of values. We do this for a few prime moduli: 
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3 

 

 

 

5        

 

 

 

7       

 

 

 

There are two features to note.  

 

First, the length of the cycle is the size of the modulus. To see why this is so, consider how the triangle 

numbers are formed and the result of working mod 5: 

 

𝑇1 =  𝑇0 + 1, 

𝑇2 = 𝑇1 + 2,  
𝑇3 = 𝑇2 + 3, 

𝑇4 = 𝑇3 + 4, 

𝑇5 = 𝑇4 + (5), 

𝑇6 = 𝑇5 + (5) + 1,                   start of new cycle 

𝑇7 = 𝑇6 + (5) + 2, 

𝑇8 = 𝑇7 + (5) + 3, 

... 

 

Second, because of the two 0s at the end of the triangle cycle, the palindromic form of the part before 

them persists downwards, (as the sequences left of the red lines).  

 

 

(ii)  

 

 

Modulo 4 

 

To this modulus, triangle numbers display a cycle of length 8, squares, 2, centred squares, 1: 

 

𝑇𝑛 : 1  3  2  2  3  1  0  0 ... 

𝑆𝑛 :      1  0  1  0  1  0  1  0  ... 

𝐶𝑆𝑛 :    1  1  1  1  1  1  1  1  ... 

 

To other even moduli it is also the case that the cycle length of the triangle numbers is a multiple of those 

of the squares and centred squares. To modulo 6 the respective lengths are 12, 6, 3; to modulo 8, 16, 4, 4. 

  

 

 

 

 

 

 

𝑇𝑛 : 1  0  0  1  0  0  1  0  0  ... 

𝑆𝑛 :      1  1  0  1  1  0  1  1  0  ... 

𝐶𝑆𝑛 :    1  2  1  1  2  1  1  2  1  ... 

𝑇𝑛 : 1  3  1  0  0  1  3  1  0  0  1  3  1  0  0  ... 

𝑆𝑛 :      1  4  4  1  0  1  4  4  1  0  1  4  4  1  0  ... 

𝐶𝑆𝑛 :    1  0  3  0  1  1  0  3  0  1  1  0  3  0  1  ... 

𝑇𝑛 : 1  3  6  3  1  0  0  1  3  6  3  1  0  0  1  3  6  3  1  0  0  ... 

𝑆𝑛 :      1  4  2  2  4  1  0  1  4  2  2  4  1  0  1  4  2  2  4  1  0  ... 

𝐶𝑆𝑛 :    1  5  6  4  6  5  1  1  5  6  4  6  5  1  1  5  6  4  6  5  1  ... 
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         Chapter 6 

 

   The Centred Hexagon, 𝑪𝑯𝒏    
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(a) Forming 𝑪𝑯𝒏 

 

The next figure shows how the centred hexagon 𝐶𝐻𝑛 is constructed. It includes all the circles on or within 

the 𝑛𝑡ℎ hexagonal ring, beginning with the central unit.  

 

 

 
 

(b) Identities involving centred hexagons and other shapes 

 

In the next figure we combine centred hexagon numbers. Our unit here is a small hexagon. 

 

We have immediately              𝟕𝑪𝑯𝒏+𝟏 + 𝟏𝟐𝑻𝒏 = 𝑪𝑯𝟑𝒏+𝟐. [6.1] 

 

 
 

The inset figure, like that above right, gives us    𝑪𝑯𝒏+𝟏 = 𝟔𝑻𝒏 + 𝟏, [6.2] 

whence         𝑻𝟑𝒏+𝟏 = 𝟗𝑻𝒏 + 𝟏.  [6.3] 

 

Anticipating [6.2], we see how the common 

formula can be derived from the figurate 

formula 6𝑇𝑛−1 + 1. 
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By considering the equation 𝑇𝑎𝑛+𝑏 = 𝑘𝑇𝑛 + 𝑙, we find this result generalises to: 

 

  𝑻(𝟐𝒌+𝟏)𝒏+𝒌 = (𝟐𝒌 + 𝟏)𝟐𝑻𝒏 + 𝑻𝒌.  [6.4] 

 

(We could write ‘2𝑘 + 1’ as ‘𝑂𝑘+1’.) 

 

We can represent this in figurate terms by making (2𝑘 + 1)2 the unit in terms of which we show 𝑇𝑛. We 

see that the region representing 𝑇(2𝑘+1)𝑛+𝑘, exceeds the region representing (2𝑘 + 1)2𝑇𝑛 by 𝑇𝑘: 

 

 
For an alternative dissection see Roger B. Nelsen’s own dissection on p. 105 of his book ‘Proofs without 

Words’. 

 

[3.7] and [5.8] lead to       𝑻𝟑𝒏+𝟐 = 𝟑(𝟐𝑻𝒏 + 𝑻𝒏+𝟏).  [6.5] 

 

By considering the equation 𝑇𝑎𝑛+𝑏 = 𝑝𝑇𝑛 + 𝑞𝑇𝑛+1, we find this generalises to: 

                                                   𝑻(𝒌+𝟏)𝒏+𝒌 = 𝑻(𝒏+𝟏)𝒌+𝒏 = 𝑻𝒌𝒏+(𝒌+𝒏) = 𝑻𝒌+𝟏𝑻𝒏 + 𝑻𝒌𝑻𝒏+𝟏. [6.6] 

 

Note that the common factor in the special case, [6.5], is spurious. But note more significantly the 

algebraic symmetry. This emerges from the following figure. We can either take 𝑇𝑘 to be the number of 

white triangles, 𝑇𝑛+1, and 𝑇𝑘+1 to be the number of blue triangles, 𝑇𝑛;  or 𝑇𝑘 to be a blue triangle, of 

which there are 𝑇𝑛+1, and 𝑇𝑘+1 to be a white triangle, of which there are 𝑇𝑛. 
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A different identity results if we reverse the size relations so that there are more of the bigger triangle. 
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This is what Roger B. Nelsen does on p. 99 of his ‘Proofs without Words II’ to obtain: 

 

                                                                                                                   (𝑻𝒏−𝟏)𝟐 + (𝑻𝒏)𝟐 = 𝑻𝑺𝒏
.  [6.7] 

 

Nelsen’s identity generalises as follows. For one n we write a; for the other, b, producing 

       

        𝑻𝒂−𝟏𝑻𝒃−𝟏 + 𝑻𝒂𝑻𝒃 = 𝑻𝒂𝒃. [6.8] 

 

We can use our original figure to interpret that. (Again we need more of the bigger triangle.) This time, 

𝑇𝑎 is the count of triangles of type 𝑇𝑏; 𝑇𝑎−1 is the count of triangles of type 𝑇𝑏−1. 

 

From [8.1] we infer (𝑇𝑛)2 − (𝑇𝑛−1)2 = 𝐶𝑛, whence: 

 

(𝑇𝑛)4 − (𝑇𝑛−1)4  
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= [(𝑇𝑛)2 + (𝑇𝑛−1)2][(𝑇𝑛)2 − (𝑇𝑛−1)2]  
= 𝑇𝑆𝑛

𝐶𝑛,           (𝑻𝒏)𝟒 − (𝑻𝒏−𝟏)𝟒 = 𝑻𝑺𝒏
𝑪𝒏.  [6.9] 

 

If n is odd, 𝑇𝑆𝑛
=

𝑆𝑛(𝑆𝑛+1)

2
 has a factor 𝑆𝑛, so 𝑇𝑆𝑛

𝐶𝑛 has a factor (𝐿𝑛)5; if n is odd, a factor (𝐿𝑛)4. 

 

Returning to [6.3] and substituting from [3.6], we have                    𝑻𝟑𝒏+𝟏 = 𝑺𝟐𝒏+𝟏 + 𝑻𝒏.  [6.10] 

      

From (5.2) and (6.2) we derive                  𝑪𝑯𝒏 − 𝑪𝑺𝒏 = 𝟐𝑻𝒏−𝟏. [6.11] 

Recalling the first two of the following identities and adding the last: 

 

𝐶𝑆𝑛 = 2𝑛(𝑛 − 1) + 1, 

𝐶𝐻𝑛 = 3𝑛(𝑛 − 1) + 1, 

𝑆2𝑛−1 = 4𝑛(𝑛 − 1) + 1, 

 

we have:        𝑪𝑯𝒏 =
𝑪𝑺𝒏+𝑺𝟐𝒏−𝟏

𝟐
.        [6.12] 

 

The following figure illustrates this. We have shown 𝐶𝐻𝑛 in terms of hexagons. Each hexagon has a red 

dot at the centre. A circle with a mauve centre is centred on the upper left vertex of each hexagon. The 

circles thus duplicate the hexagons and the number of circles plus hexagons, red dots plus mauve dots, is 

2𝐶𝐻𝑛. We partition these between the chevron on the left, enclosing 𝑆2𝑛−1 dots and the rhombus on the 

right, enclosing 𝐶𝑆𝑛 dots. 

 

 
 

The dissection below shows:                 𝑪𝑯𝒏 = 𝑻𝒏−𝟐 + 𝟒𝑻𝒏−𝟏 + 𝑻𝒏. [6.13]  
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The alternate hexagon, 𝑨𝑯𝒎,𝒏 

 

We can derive from the centred hexagon, whose sides have equal length, an equiangular hexagon whose 

sides are of alternate lengths m, n. We shall call this the alternate hexagon, symbol 𝐴𝐻𝑚,𝑛, 𝑚 > 𝑛 > 0. 

The following figure shows the sequence developed from 𝐶𝐻4. The symbol sequences include limiting 

cases in order to illustrate the progressions. 

 

 
Algebra confirms the identity instanced here:   𝑻𝟑𝒏−𝟏 = 𝑪𝑯𝒏 + 𝟑𝑻𝒏−𝟏. [6.14] 

 

When we come to consider CH numbers as 

gnomons to a cube, we shall meet the 3-D 

analogue of this identity. 
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By generalising the expressions in centred hexagons and trapezoids, moving left to right as it were, we 

find: 

 

𝐴𝐻𝑚,𝑛 = 𝐶𝐻𝑚+2𝑛

3

+ 3 [𝑇𝑚+2𝑛−3

3

− 𝑇𝑛−1], an unnecessarily complex expression. 

 

If we move right to left, we can begin with a triangle and truncate it progressively. Working in terms of 

triangles rather than centred hexagons and trapezoids, we derive the simpler form: 

 

𝐴𝐻𝑚,𝑛 = 𝑇𝑚+2(𝑛−1) − 3𝑇𝑛−1 . 

 

As with other 2-parameter shapes, two different symbols can code the same number, For example,  

𝐴𝐻5,3 = 𝑇9 − 3𝑇2 = 𝐴𝐻8,1 = 𝑇8. 
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     Chapter 7 

 

 

      The Tetrahedron, 𝑻𝒆𝒕𝒏 
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(a) Forming 𝑻𝒆𝒕𝒏 

 

To make a tetrahedron, we stack triangles. 𝑇𝑛 is gnomon to 𝑇𝑒𝑡𝑛−1 as, in two dimensions, 

n is gnomon to 𝑇𝑛 .  

                                                                                                                        𝑻𝒆𝒕𝒏−𝟏 + 𝑻𝒏 = 𝑻𝒆𝒕𝒏 . [7.1] 

Alternatively, we may section the packing in rectangular slabs: 

 

 
 

 

X 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 

 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 

 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 

 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 

 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 

 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 

 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 

 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 

 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 

 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 

 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 

 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 

 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

On the multiplication square these appear on 

a line perpendicular to the main diagonal 

since the orange numbers are symmetrical 

about it. 

 

This dissection corresponds to the sum 

𝑇𝑒𝑡𝑛 = ∑ 𝑖(𝑛 + 1 − 𝑖)𝑖=𝑛
𝑖=1 . 
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(b) Its algebraic formula 

 

A dissection demonstrating the general formula is found on p. 95 of Roger B. Nelsen’s ‘Proofs without 

Words’. There are two chiral sets of 3 congruent shapes, which fit together to make a congruent pair of 

staircases. Notice how chiral pairs match. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We fold one staircase on top of the other to make a cuboid having dimensions 𝑛 , 𝑛 + 1, 𝑛 + 2. 
The volume of the 𝑛𝑡ℎ tetrahedron is then 1/6 of this product. 

 

For a two-dimensional dissection, see that of Monte J. Zerger on p. 94  of the work cited above: 

 

 

 

 

 

 

 
 

 

 (c)  Gnomonic relations 

  

𝑇𝑛 

n+2 

3𝑇𝑒𝑡𝑛 = 𝑇𝑛 × (𝑛 + 2), 

 𝑇𝑒𝑡𝑛  = 𝑇𝑛 ×
𝑛+2

3
  

         =
𝑛(𝑛+1)

2
×

𝑛+2

3
 

            =
𝑛(𝑛+1)(𝑛+2)

6
. 
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We can also have gnomonic grandparents as we did in two dimensions. 

The same figure which illustrated the two-dimensional case serves to distinguish the two possible 

arrangements here, this time of spheres rather than disks. 

 

The resulting identity is   𝑻𝒆𝒕𝒏−𝟐 + (𝑻𝒏−𝟏 + 𝑻𝒏) = 𝑻𝒆𝒕𝒏−𝟐 + 𝑺𝒏 = 𝑻𝒆𝒕𝒏 .  [7.2] 

 

As in two dimensions, we can draw the great-grandparent enclosing the original figure. The identity here 

is: 

 

                                        𝑻𝒆𝒕𝒏−𝟑 + (𝑻𝒏−𝟐 + 𝑻𝒏−𝟏 + 𝑻𝒏) = 𝑻𝒆𝒕𝒏−𝟑 + 𝟑𝑻𝒏−𝟏 + 𝟏 = 𝑻𝒆𝒕𝒏 . [7.3] 

 

We have used the identity 𝑇𝑛−2 + 𝑇𝑛−1 + 𝑇𝑛 = 3𝑇𝑛−1 + 1, which is [3.7] in disguise, but may be shown 

in this form by  the following figure, where we see that the red cells exceed the blue cells by 1. [3.7] 

emerges from omitting the middle triangle. 

 

 
 

(d) The difference of two tetrahedra (the frustum of a tetrahedron, the general gnomon to a 

tetrahedron)  

 

𝑇𝑒𝑡𝑎+𝑘 − 𝑇𝑒𝑡𝑎 is the sum of the k consecutive triangles, beginning with 𝑇𝑎+1 . 

The algebra yields this number as 
𝑘

6
[3(𝑎2 + 𝑎𝑘 + 2𝑎 + 𝑘) + (𝑘2 + 2)] or 

or 𝑘𝑇𝑎 + 𝑎𝑇𝑘 + 𝑇𝑒𝑡𝑘. Here is the frustum thus dissected: 
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Note that, if we add back the empty piece, which is 𝑇𝑒𝑡𝑎, to complete the tetrahedron 𝑇𝑒𝑡𝑎+𝑘, we have, as 

required, an expression symmetrical in a and k: 𝑇𝑒𝑡𝑎+𝑘 = 𝑎𝑇𝑘 + 𝑘𝑇𝑎 + 𝑎𝑇𝑘 + 𝑘𝑇𝑎. The following 

pictures bring out these relations. Note how the a triangular slabs, 𝑇𝑘 , laid along the steps of the green 

staircase, 𝑘𝑇𝑎, constitute a staircase of their own, 𝑎𝑇𝑘. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e) The divisibility of the sum of k consecutive triangles 

 

(i) Inspecting the first expression in (d), we see that, if k is a prime > 3, since it shares no factors with 6, it 

must survive cancelling of the whole expression and therefore be a divisor of all sums of nk consecutive 

squares. 

 

(ii) If k contains the factors 2𝑎 or 3𝑏, 𝑎, 𝑏 > 1, the exponents a, b will fall by at most 1 on cancellation 

with the ‘6’ in the denominator, and so a divisor of the total will retain the factors 2𝑎−1 or 3𝑏−1. 

 

(iii) Combining (i) and (ii), we conclude that, for p a prime > 3, a, b >1, 

2𝑎−13𝑏−1𝑝 divides the sum of 2𝑎3𝑏𝑛𝑝 consecutive triangles. 
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                  Chapter 8 

 

                                The Pyramid, 𝑷𝒚𝒓𝒏 
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(a) Forming 𝑷𝒚𝒓𝒏 

 

To make a pyramid, we stack squares:                                                                                                                     
                                                                                                                     𝑷𝒚𝒓𝒏−𝟏 + 𝑺𝒏 = 𝑷𝒚𝒓𝒏. [8.1] 

 

These are shown in yellow on the multiplication square below. 

 

 
 

 

In terms of the multiplication square, and our dissection of the tetrahedron in rectangular slabs, [5.2] 

requires us to add the cells shown in orange and blue beneath. The column totals appear in the green cells. 

These also result from a different dissection of the pyramid. In the colour-coded picture below we have 

taken a corner pyramid and divided  

it into L-shaped prisms. This  

dissection corresponds to the sum  

 

𝑃𝑦𝑟𝑛 = ∑ (2𝑖 − 1)(𝑛 + 1 − 𝑖)𝑖=𝑛
𝑖=1 . 

 

Compare this expression with the  

corresponding  

one for 𝑇𝑒𝑡𝑛. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can compare the figures layer by layer. 

 

As we had 𝑇𝑛−1 + 𝑇𝑛 = 𝑆𝑛, we have  

 

                      𝑻𝒆𝒕𝒏−𝟏 + 𝑻𝒆𝒕𝒏 = 𝑷𝒚𝒓𝒏.  [8.2] 

 

 

8 x 1

7 x 3

6 x 5

5 x 7
4 x 9
3 x 11
2 x 13
1 x 15
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X 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 

 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 

 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 

 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 

 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 

 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 

 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 

 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 

 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 

 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 

 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 

 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 

 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

 

The general formula emerges from this dissection based on that by Man-Keung Siu, found on p. 77 of 

Roger B. Nelsen’s ‘Proofs without Words’. There are 6 congruent pieces, fitted together in threes to make 

two congruent blocks, which in turn fit together to make a cuboid with dimensions 𝑛, 𝑛 + 1, 2𝑛 + 1. 

The volume of the 𝑛𝑡ℎ pyramid is then 1/6 of the product. 
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Monte J. Zerger’s dissection exhibiting the formula for 𝑇𝑒𝑡𝑛 can be adapted to show 𝑃𝑦𝑟𝑛 as follows. 

 

 

 
 

Here is an alternative dissection. This is due to Dan Kalman and Martin Gardner and is found on p. 78 of 

Roger B. Nelsen’s ‘Proofs without Words’. 

 

 
 

 

𝑛 − 1 

𝑛 + 2 

2𝑛 + 1 

𝑇𝑛 

             3𝑃𝑦𝑟𝑛 = 𝑇𝑛 × (2𝑛 + 1), 

𝑃𝑦𝑟𝑛 = 𝑇𝑛 ×
2𝑛 + 1

3
 

               =
𝑛(𝑛+1)(2𝑛+1)

6
. 
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(b) Another identity 

 

𝑇𝑒𝑡2𝑛 = (𝑇1 + 𝑇2) + (𝑇3 + 𝑇4) + (𝑇5 + 𝑇6) + ⋯ + (𝑇2𝑛−1 + 𝑇2𝑛)  

           =       𝑆2        +       𝑆4        +        𝑆6       + ⋯ +           𝑆2𝑛 

           =     4𝑆1        +        4𝑆2     +        4𝑆3     + ⋯ +          4𝑆𝑛 

           =     4(𝑆1 + 𝑆2 + 𝑆3 + ⋯ + 𝑇𝑛) 

           =     4𝑃𝑦𝑟𝑛,       𝑻𝒆𝒕𝟐𝒏 = 𝟒𝑷𝒚𝒓𝒏. [8.3] 

 

Here is that derivation in visual form: 

 

 
 

(c) Summing consecutive squares (making the frustum of a pyramid, the general gnomon to a 

pyramid) 
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(i) The sum of the consecutive squares (𝑎 + 1)2, (𝑎 + 2)2, (𝑎 + 3)2, … , (𝑎 + 𝑘)2 = 𝑃𝑦𝑟𝑎+𝑘 − 𝑃𝑦𝑟𝑎, 

which the algebra shows to be 𝑎𝑘(𝑎 + 𝑘 + 1) + 𝑃𝑦𝑟𝑘 . 

 

That result also emerges from this dissection into ‘corner’ pyramids: 

 

 
 

If we define the cuboidal number 𝐶𝑢𝑚,𝑛 as 𝑚𝑛(𝑚 + 𝑛 + 1), thinking of the factors m, n, (𝑚 + 𝑛 + 1) 

as the dimensions of the cuboid, we can write a figurate equation:  

 

 ∑ 𝑖2𝑖=𝑎+𝑘
𝑖=𝑎+1 =       𝑷𝒚𝒓𝒂+𝒌 − 𝑷𝒚𝒓𝒂 = 𝑪𝒖𝒂,𝒌 + 𝑷𝒚𝒓𝒌 .  [8.4] 

 

Note that 𝐶𝑢𝑚,𝑛 is symmetrical in m and n. 

 

Rewriting the equation: 𝑃𝑦𝑟𝑎+𝑘 − 𝑃𝑦𝑟𝑎 − 𝑃𝑦𝑟𝑘 = 𝐶𝑢𝑎,𝑘, 

which we note is symmetrical in a and k, we see that the left side is composite for a or k > 1, and that, for 

a and k > 1, the expression has ≥ 3 prime factors, not necessarily distinct. 
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(ii) Two special cases 

 

𝑎 = 2, 𝑘 = 1: 𝐶𝑢2,1 = 𝐶2. 
 

Rearranging the pyramid numbers as sums of squares leads to the unique case where two perfect powers 

differ by 1: 32 = 23 + 1. 

 

𝑎 = 3, 𝑘 = 2: 𝐶𝑢3,2 = 𝑆6. 

 

First rearranging the pyramid numbers as sums of squares, then grouping pairs of consecutive squares as 

centred square numbers, leads to 𝐶𝑆5 − 𝐶2 = 𝑆6. 

 

(iii) Dostor’s identity 

 

Here is a Pythagorean equation extended as shown by the nineteenth century mathematician Georges 

Dostor. In figurate terms, we can view the left and right sides of these equations as pyramid frusta. 

 

32 + 42 = 52 . 

102 + 112 + 122 = 132 + 142 . 

212 + 222 + 232 + 242 = 252 + 262 + 272. 

...     ... . 
(𝑻𝟐𝒏)𝟐 + (𝑻𝟐𝒏 + 𝟏)𝟐 + ⋯ + (𝑻𝟐𝒏 + 𝒏)𝟐 = (𝑻𝟐𝒏 + 𝒏 + 𝟏)𝟐 + (𝑻𝟐𝒏 + 𝒏 + 𝟏)𝟐 + ⋯ + (𝑻𝟐𝒏+𝟏 − 𝟏)𝟐 [8.5] 

 

The following visualisation makes the left-most term the subject of the formula. (All it represents in fact 

is the difference-of-two-squares factorisation of the right hand side.) 

 

 
 

For an alternative dissection, see Michael Boardman’s on p. 92 of Roger B. Nelsen’s ‘Proofs without 

Words II’. Boardman makes the middle term the subject. 
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(iv) The divisibility of sums of consecutive squares 

 

From [8.4] we have that the sum of k consecutive squares, beginning with the (𝑎 + 1)𝑡ℎ is 

 

𝑎𝑘(𝑎 + 𝑘 + 1) + 𝑃𝑦𝑟𝑘 . 

 

𝑃𝑦𝑟𝑘 =
𝑘(𝑘+1)(2𝑘+1)

6
 . 

 

(1) If k is a prime > 3, it shares no factors with 6, which must therefore divide (𝑘 + 1)(2𝑘 + 1), leaving k 

as a divisor of 𝑃𝑦𝑟𝑘. Since k divides 𝑎𝑘(𝑎 + 𝑘 + 1) and 𝑃𝑦𝑟𝑘, it must divide 𝑎𝑘(𝑎 + 𝑘 + 1) + 𝑃𝑦𝑟𝑘, 

thus, if k is a prime > 3, it must divide the sum of k consecutive squares. 

 

(2) Attending separately to the two parts of the original expression in the way just described, we find that, 

for 𝑛 > 1, 2𝑛−1 divides the sum of 2𝑛 consecutive squares.  

 

(3) And 3𝑛−1 divides the sum of 3𝑛 consecutive squares. 

 

(4) Combining (1), (2) and (3), we see that, for p a prime > 3 and a > 1, 𝑏 > 0, 2𝑎−13𝑏−1𝑝 divides the 

sum of 2𝑎3𝑏𝑝 consecutive squares. 
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     Chapter 9 

 

The Octahedron, 𝑶𝒄𝒕𝒏   
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(a) Forming 𝑶𝒄𝒕𝒏 
 

To make an octahedron, we take a pyramid, and stick        

the base to an inverted pyramid one layer  

bigger.                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        𝑷𝒚𝒓𝒏−𝟏+𝑷𝒚𝒓𝒏 = 𝑶𝒄𝒕𝒏.    [9.1]                                             

 

If we take the green cells from the multiplication 

table we displayed for the pyramid, and pair them 

side-by-side with those for a pyramid one size 

smaller, we shall therefore have an octahedron if 

we sum horizontally, then add those totals. This is 

shown on the multiplication square below. Note 

that the diagonal containing the resulting cells is 

perpendicular to the main diagonal because the 

dark blue sums are symmetrical about it. (Recall 

our first multiplication square.) 
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X 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 

 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 

 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 

 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 

 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 

 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 

 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 

 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 

 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 

 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 

 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 

 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 

 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

The dark blue cells either side of the central ‘49’ sums to pyramid numbers. We have dissected the 

octahedron like this: 

 

        𝑺𝒏 + 𝟐𝑷𝒚𝒓𝒏−𝟏 = 𝑶𝒄𝒕𝒏 .   [9.2] 

 

 Below right is the octahedron represented as a centred 

square pyramid and seen in plan. 

 

 

 

 

 

 

 

 

 

Below left is a schematic vertical 

section of the model in the photograph 

above. 
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As we know, a centred square is a sum of two consecutive squares. Each layer on the right combines one 

layer from the upright pyramid with one from the inverted one. 

 

If we isolate the central column, as we did the square in two dimensions, we have the three-dimensional 

analogue of [5.2]: 

 

                                                                                                                  𝑶𝒄𝒕𝒏 = 𝟒𝑻𝒆𝒕𝒏−𝟏 + 𝑳𝒏. [9.3] 

(b) The gnomon 

 

We can also treat the centred square as gnomon to an octahedron. Here is a CS sequence: 
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If we swap the cubes for spheres and push in the centres,  

we have pyramidal shells which nest to form the  

octahedron.  

Here is a net, showing how  

the consecutive squares appear in the spheres 

and how the net folds about the blue lines 

into a shell. 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

𝑶𝒄𝒕𝒏−𝟏 + 𝑪𝑺𝒏 = 𝑶𝒄𝒕𝒏.   [9.4] 

 

We give here the grandparent and 

great-grandparent for information 

only: 

 

Grandparent: 

 

𝑂𝑐𝑡𝑛−2 +  𝐶𝑆𝑛−1 + 𝐶𝑆𝑛 

= 𝑶𝒄𝒕𝒏−𝟐 + 𝟐(𝟐𝑺𝒏 − 𝟒𝑳𝒏 + 𝟑) 

                                     = 𝑶𝒄𝒕𝒏. [9.5]

   

 

Great-grandparent, (which can 

enclose the original): 

 

𝑂𝑐𝑡𝑛−3 +  𝐶𝑆𝑛−2 + 𝐶𝑆𝑛−1 + 𝐶𝑆𝑛 

= 𝑶𝒄𝒕𝒏−𝟑 + 𝟑(𝟐𝑺𝒏 − 𝟔𝑳𝒏 + 𝟏𝟗) 

                                     = 𝑶𝒄𝒕𝒏. [9.6] 
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(c) Packing 

 

Regular tetrahedra pack with regular octahedra to fill space.  Likewise tetrahedra and octahedra made 

from a close packing of spheres. This gives us the identity 

 

        𝑻𝒆𝒕𝟐𝒏+𝟏 = 𝟒𝑻𝒆𝒕𝒏 + 𝑶𝒄𝒕𝒏+𝟏.  [9.7] 

 

From (6.2) we have, with change of suffix, 𝑂𝑐𝑡𝑛+1 = 4𝑇𝑒𝑡𝑛 + 𝐿𝑛+1. Substituting in (9.7), 

 

                                                                                                               𝑻𝒆𝒕𝟐𝒏+𝟏 = 𝟖𝑻𝒆𝒕𝒏 + 𝑳𝒏+𝟏.  [9.8]  

 

In the Cube chapter, we exploit the fact that we can make a rhombohedron, which is in figurate terms a 

cube, from two tetrahedra and an octahedron.     
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                  Chapter 10 

 

                                                   The Cube, 𝑪𝒏 
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(a) The gnomon 
 

Here again is 𝐶𝐻𝑛. 

 
 

Here are the gnomons formed from cubes, with colours to bring out the concentric rings in the original 

centred hexagon, shown in yellow marbles: 

 

 
 

Substituting [6.2] in [10.1], we have:     𝑪𝒏−𝟏 + 𝟔𝑻𝒏−𝟏 + 𝟏 = 𝑪𝒏. [10.2] 

 

Building the cube out from a unit in gnomons, we have:  𝟔𝑻𝒆𝒕𝒏−𝟏 + 𝑳𝒏 = 𝑪𝒏.         [10.3] 

 

(b) Other gnomonic relations 

 

The grandparent can be constructed to enclose the cube. The identity is: 

 

                                                              𝑪𝒏 = 𝑪𝒏−𝟐 + 𝑪𝑯𝒏−𝟏 + 𝑪𝑯𝒏 = 𝑪𝒏−𝟐 + 𝟔𝑺𝒏−𝟏 + 𝟐. [10.4] 

 

If the enclosing box is 𝐶2𝑛+1 − 𝐶2𝑛−1, we can break it down like this: 

 

                                                         12𝐶𝑆𝑛 + 24(𝑛 − 1) + 6 + 8. 

 

 

 

If we swap the circles for spheres, and fold so 

that the red lines of spheres at 120° become 

mutually perpendicular, we shall have the 

gnomon to a cube. That is to say: 

 

                           𝑪𝒏−𝟏 + 𝑪𝑯𝒏 = 𝑪𝒏. [10.1] 
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              𝐶𝑆𝑛 for each edge              (𝑛 − 1) for each          1 for each face     1 for each vertex 

                                                        half of a face 

            diagonal 

The picture illustrates this structure: 

 

 
 

 

 

The great-grandparent identity is:  

                                 𝑪𝒏 = 𝐶𝑛−3 + 𝐶𝐻𝑛−2 + 𝐶𝐻𝑛−1 + 𝐶𝐻𝑛 = 𝑪𝒏−𝟑 + 𝟗(𝑺𝒏 − 𝟑𝑳𝒏 + 𝟑).  [10.5] 

 

In the Pyramid chapter we described a dissection based on that of Man-Keung Siu where 6 pyramids 

could be arranged as a cuboid . If we arrange four such cuboids like this, you see that, writing 2𝑛 − 1  
as  𝑂𝑛, we have:    

                                                                                                 24𝑷𝒚𝒓𝒏−𝟏 + 𝑶𝒏 = 𝑪𝑶𝒏
.   [10.6] 

 

The dimension of 𝑂𝑛 is 3, as it represents a square prism  measuring 1 × 1 × 𝑂𝑛. 

 
The part above the dotted line recalls [3.6]. We 

have: 

 

                      𝑶𝒏(𝟖𝑻𝒏−𝟏 + 𝟏) = 𝑪𝑶𝒏
 .   [10.7] 
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In the Octahedron chapter we mention that we can make a rhombohedron, which is in figurate terms a 

cube, from two tetrahedra and an octahedron. This gives us the following identity: 

 

        𝟐𝑻𝒆𝒕𝒏−𝟏 + 𝑶𝒄𝒕𝒏 = 𝑪𝒏.        [10.8] 

 

Substituting from [9.1]:    𝟐𝑻𝒆𝒕𝒏−𝟏 + 𝑷𝒚𝒓𝒏−𝟏 + 𝑷𝒚𝒓𝒏 = 𝑪𝒏.  [10.9] 

 

This is realised in the following dissection, where we replace spheres with cubes, using corner tetrahedra 

and corner pyramids: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
With [8.2] we transform [9.10] into this:  𝑻𝒆𝒕𝒏−𝟐 + 𝟒𝑻𝒆𝒕𝒏−𝟏 + 𝑻𝒆𝒕𝒏 = 𝑪𝒏. [10.10]  

This is the 3-D analogue of [6.12]. 

 

Removing one layer from the cube and again using [8.2], we have: 

 

                   𝟐(𝑻𝒆𝒕𝒏−𝟏 + 𝑷𝒚𝒓𝒏−𝟏) = 𝑪𝒏 − 𝑺𝒏.   [10.11] 

 

The following dissection, using corner tetrahedra and corner pyramids, shows this: 

 

 

 

  

𝑃𝑦𝑟𝑛 

𝑃𝑦𝑟𝑛−1 

𝑇𝑒𝑡𝑛−1 𝑇𝑒𝑡𝑛−1 
𝑃𝑦𝑟𝑛 + 𝑃𝑦𝑟𝑛−1 𝐶𝑛 

1 2 3 
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We note the analogy between [6.10] and [10.8]. But it’s instructive to track the analogies right back to 

points: 

 

   = ‘is gnomon to’ 

1. 2(1)    +  4(1)   =  6(1)  

 

 

2. 2(𝐿𝑛−1 )  +  4(𝐿𝑛−1 )  =  6(𝐿𝑛−1)   

 

 

 

3. 2(𝑇𝑛−1)  +   𝐶𝑆𝑛   =    𝐶𝐻𝑛 

 

 

 

4. 2(𝑇𝑒𝑡𝑛−1)  +  𝑂𝑐𝑡𝑛   =     𝐶𝑛 

 

 

The following figure shows the stage 2 elements being added to complete the stage 3 figures. 

 

 
(c)  The graphic representation of cubes and higher powers 

 

For squares, a pattern of dots in n rows and n columns is the definitive representation. To represent a 

power higher than 2 we can find a simple motif and replicate it as a fractal. Below we have shown  

the cubes of 3, 5 and 7 in this way, and have taken 2 up to the sixth power as an ‘H’ fractal. 

5 is 𝐶𝑆2. 52 is 𝐶𝑆4. Making our motif a pair of consecutive squares superposed, we can produce a more 

compact representation of even powers of 5 than by continuing to replicate the ‘quincunx’. Here is 

54. We also show (𝐶𝑆3)2 = 132 in this way. 
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 82 

 

         Chapter 11 

 

The square of the triangle, (𝑻𝒏)𝟐
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(a) The identity concerned 

 

                              ∑ 𝑪𝒊
𝒊=𝒏
𝒊=𝒌+𝟏 = (𝑇𝑛)2 − (𝑇𝑘)2 = (𝑻𝒏 + 𝑻𝒌)(𝑻𝒏 − 𝑻𝒌), 𝑛 ≥ 𝑘 + 1.  [11.1] 

 

There are many graphical representations of this result for the case 𝑘 = 0, when we have simply 

 

∑ 𝑖3𝑖=𝑛
𝑖=1 = (𝑇𝑛)2. 

 

See especially Roger B. Nelsen’s ‘Proof without Words’, p. 87, where there is a dissection found 

independently by Antonella Cupillari and Warren Lushbaugh:  

 

 

 
 

 

Since 𝑛 ≥ 𝑘 + 1, [11.1] shows that any sum of consecutive cubes must be a composite number. 

 

(b) Special cases 

 

(i) The case 𝑘 = 2, 𝑛 = 5 records a run of cubes, the fourth of which is the sum of the previous three. 

(There is a celebrated dissection puzzle showing this result.) 

 

𝐶3 + 𝐶4 + 𝐶5 = 𝐶6 = (𝑇5)2 − (𝑇2)2 = (𝑇5 + 𝑇2)(𝑇5 − 𝑇2) = (𝑇3)3 . 

 

Setting up this equation: (𝑛 − 2)3 + (𝑛 − 1)3 + 𝑛3 = (𝑛 + 1)3, we derive: 

(𝑛 − 5)(𝑛2 − 𝑛 + 1) = 0, whose only integer root is 5. The run of cubes is therefore unique. 

 

13 

23 

𝑛3 

𝑛 × 𝑛 𝑛 

𝑛(𝑛 + 1) 
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(ii) Taking 𝑘 = 0, we can ask whether the sum of the first n cubes can be a cube. 

 

We know that it is the square of a triangle number, so we have: 

(𝑇𝑛)2 = 𝑚3, 

𝑇𝑛 = 𝑚
3
2 . 

For this to be an integer, we require 𝑚 = 𝑠2, whence 

𝑇𝑛 = 𝑠3 . 

But we saw in chapter 1, section (i), that no triangle number > 1 is a cube. 

Therefore the sum of the first n cubes cannot be a cube. 

 

(iii)  

 

If we add the first n consecutive odd cubes, we obtain 𝑇2𝑛2−1. ∑ (𝟐𝒊 − 𝟏)𝟑𝒊=𝒏
𝒊=𝟏 = 𝑻𝟐𝒏𝟐−𝟏.  [𝟏𝟏. 𝟐] 

On p. 91 of Roger B. Nelsen’s ‘Proofs without Words’ is a demonstration of this fact due to Monte J. 

Zerger: 

 
 

By analogy, the sum of the first n consecutive odd squares is: 

 

1 + 9 + 25 + ... + 𝑆2𝑛−1 = 1 + (3 + 6) + (10 + 15) + ⋯ + 𝑇2𝑛−2 + 𝑇2𝑛−1 

= 1 + 3 + 6 + ⋯ + 𝑇2𝑛−1 = 𝑇𝑒𝑡2𝑛−1 ,                          ∑ (𝟐𝒊 − 𝟏)𝟐𝒊=𝒏
𝒊=𝟏  = 𝑻𝒆𝒕𝟐𝒏−𝟏. [11.3] 

 

We saw in section (b), (ii) that the first n cubes cannot sum to a cube. From [8.2] we learn that the sum 

of the first n odd cubes is a triangle number. Since a triangle number > 1 cannot be a cube, it is also true 

that the sum of the first n odd cubes cannot be a cube. 

 

The sum of the first n even cubes = 23 × the sum of the first n cubes = 23(𝑇𝑛)2. Since 𝑇𝑛 cannot be a 

cube > 1, the right side of this equation cannot be a cube. So it is also true that the sum of the first n even 

cubes cannot be a cube. 
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(iv) [8.2] gives us the sum of the consecutive odd cubes (𝑏 + 1)3 +(𝑏 + 2)3 + (𝑏 + 3)3 + ⋯ + 𝑎3: 

 

𝑇2𝑎2−1 − 𝑇2𝑏2−1, which simplifies to (𝑎 + 𝑏)(𝑎 − 𝑏)[2(𝑎2 + 𝑏2) − 1]. 
 

The third bracket is odd; the first two brackets have the same parity. When a, b are both even, the 

expression has the factor 4, that is to say, an even number of consecutive odd cubes divides by 4. 

 

When 𝑎 = 𝑏 + 1, we have 𝐶2𝑏+1. 

 

(c) The divisibility of sums of consecutive cubes 

 

Consider sequences of consecutive cubes which do not necessarily start with 1. We have: 

 

∑ 𝑖3𝑖=𝑎+𝑘
𝑖=𝑎+1 = (𝑇𝑎+𝑘)2 − (𝑇𝑎)2, for 𝑎 ≥ 0, which simplifies to [𝑘𝑎 + 𝑇𝑘][𝑎2 + (𝑘 + 1)𝑎 + 𝑇𝑘]. 

 

If we are interested in finding divisors of those sums, there are several useful principles we can apply. 

 

(1) Extracting common factors, we have immediate divisors of those sums. But, by regrouping terms, we 

can test whether 2 and 3 are further divisors. This move rests on the distributivity of multiplication over 

addition. If p divides a, say 𝑎 = 𝑓𝑝, and p divides b, say 𝑏 = 𝑔𝑝, then p divides (𝑎 + 𝑏) since (𝑎 + 𝑏) =
𝑝(𝑓 + 𝑔). So, if we have a bracket (𝑥 + 3𝑡), we have only to show that 3 divides x to know that 3 divides 

the whole bracket, (𝑥 + 3𝑡). For example, when k = 3, we have: 3(𝑎 + 2)(𝑎2 + 4𝑎 + 6). We rewrite the 

expression, recasting the second bracket: 3(𝑎 + 2)[𝑎(𝑎 + 1) + 3(𝑎 + 2)]. Exactly one of 

𝑎, (𝑎 + 1), (𝑎 + 2) must divide by 3. Therefore either (𝑎 + 2) or 𝑎(𝑎 + 1) must have factor 3. Therefore 

3 divides either (𝑎 + 2) or [𝑎(𝑎 + 1) + 3(𝑎 + 2)]. So the original expression must have divisor 32.  

 

(2) It is often useful to isolate 𝑎(𝑎 + 1) for we know that the two factors have opposite parity and 

therefore that 𝑎(𝑎 + 1) is even.  

 

(3) We can invoke another consequence of the distributivity of multiplication over addition.  

If a sequence of length k has divisor d, then a sequence of length nk must also have divisor d. 

This is an instance of the following more general result. 

 

Let 𝑑(𝑎) be a known divisor of a. Let 𝑑(𝑏) be a known divisor of b. Then we know that lcm(𝑎, 𝑏) has a 

divisor ≥ 𝑙𝑐𝑚[𝑑(𝑎), 𝑑(𝑏)].  
 

(4) Odd and even terms alternate. This means that the sum of 4 consecutive cubes will be even since we 

shall be adding two even terms and two odd. But the sum of six consecutive cubes will be odd since we 

shall be adding three even terms and three odds. Generalising, the sum of k = 4𝑛 + 2 cubes will be odd 

for n > 0. The sum of an odd number of consecutive cubes will be odd or even depending on the parity of 

the first cube: 

 

                               Total even 

 

Odd Even Odd Even Odd Even Odd  ... 

  

                                             Total odd 

 

There are a number of observations of interest.  
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(i) When k is a odd, the first bracket in our general expression = [𝑘𝑎 +
𝑘(𝑘+1)

2
]. Since (k+1) is even, the 

second term is an integer and we can take out the factor 𝑘. So, when k is odd, k divides the sum of k 

consecutive cubes. 

 

(ii) When 𝑘 = 2𝑛, we have this total: 

[2𝑛𝑎 + 𝑇2𝑛][𝑎2 + (2𝑛 + 1)𝑎 + 𝑇2𝑛], which simplifies to: 

2𝑛[2𝑎 + 2𝑛 + 1][𝑇𝑎 + 2𝑛−2(2𝑎 + 2𝑛 + 1), that is, 2𝑛 divides the sum of a sequence of 2𝑛 consecutive 

cubes where n > 1. 

 

(iii) By principle (3) we can combine results (i) and (ii) and say that 2𝑛(2𝑠 + 1) divides the sum of 

2𝑛(2𝑠 + 1) consecutive cubes where n > 1. 

 

(iv) When 𝑘 = 3𝑛, we have 

[3𝑛𝑎 + 𝑇3𝑛][𝑎2 + (3𝑛 + 1)𝑎 + 𝑇3𝑛]  

= 3𝑛 [𝑎 +
3𝑛+1

2
] [𝑎(𝑎 + 1) + 3𝑛 3𝑛+1

2
]  

= 3𝑛 [(𝑎 + 2) +
3𝑛−3

2
] [𝑎(𝑎 + 1) + 3𝑛 3𝑛+1

2
]  

= 3𝑛 [(𝑎 + 2) + 3
3𝑛−1−1

2
] [𝑎(𝑎 + 1) + 3𝑛 3𝑛+1

2
] . 

 

Having isolated those two multiples of 3 in the square brackets, we invoke the argument we used above 

that either (𝑎 + 2) or 𝑎(𝑎 + 1) has divisor 3 and therefore that either the first or second square bracket 

has factor 3, concluding that the whole expression has factor 3𝑛+1. So, when k = 3𝑛, 𝑛 > 0, 3𝑛+1 divides 

the sum of 3𝑛  consecutive cubes. 

 

(v) We can combine (iii) and (iv) to make a further generalisation. When 𝑘 = 2𝑎3𝑏(2𝑠 + 1), 

2𝑎3𝑏+1(2𝑠 + 1)divides the sum of the 2𝑎3𝑏(2𝑠 + 1) consecutive cubes where a > 1, 𝑏 > 1. For 

example, 36 divides the sum of 12, 45 the sum of 15, 54 the sum of 18, 63 the sum of 21, 72 the sum of 

24 consecutive cubes. 

 

Principle (3) allows us to check particular results we derive. 

 

(d) When is the sum of consecutive cubes a square? 

 

Section (c) opened with this equation for the sum of k consecutive cubes, beginning with the (𝑎 + 1)𝑡ℎ: 

[𝑘𝑎 + 𝑇𝑘][𝑎2 + (𝑘 + 1)𝑎 + 𝑇𝑘].  
Regrouping terms, we have: 

 [𝑘(𝑎 + 1) + 𝑇𝑘−1][(𝑎 + 𝑘)(𝑎 + 1) + 𝑇𝑘−1]. 
Comparing corresponding terms in the two square brackets, we see that the sum is certainly a square if  

𝑎 + 𝑘 = 𝑘, i.e. 𝑎 = 0.  

 

But are there other cases? 

 

If 𝑎 > 0, we can write, for some rational number s > 1, 

[(𝑎 + 𝑘)(𝑎 + 1) + 𝑇𝑘−1] = 𝑠2[𝑘(𝑎 + 1) + 𝑇𝑘−1]. 
If 𝑘 = 1, we have 𝑠2 = 𝑎 + 1. We can then find squares by choosing a values 1 less than a square. For 

example, when 𝑎 = 3, we have 43 = 82; when 𝑎 = 8, 93 = 272 and so on. 

 

To test for 𝑘 > 1, we return to [11.1]. 𝑇𝑎+𝑘 and 𝑇𝑎 are respectively the hypotenuse and a shorter side of a 

Pythagorean triangle. The square we require is that of the remaining side, d. 
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Here is the smallest solution, showing 𝑑2 = (𝑇𝑎+𝑘 + 𝑇𝑎)(𝑇𝑎+𝑘 − 𝑇𝑎). The task of finding this was set by 

the famous puzzlist Charles Dudeney. 

 

 
 

𝑎 = 22, 𝑘 = 3, 𝑑 = 204. The triple is (204, 253, 325). (Out of interest, this result correspond to an s value 

in our previous formula of 
17

6
.) 
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Chapter 12 

 

 The Centred Cube, 𝑪𝑪𝒏 
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For two consecutive cubes, we have the 𝑛𝑡ℎ centred cube, 𝐶𝐶𝑛, = 
(𝑛 − 1)3 + 𝑛3 = (𝑇𝑛)2 − (𝑇𝑛−2)2 = 2𝑛3 − 3𝑛2 + 3𝑛 − 1 = (2𝑛 − 1)(𝑛2 − 𝑛 + 1). 

 

Note that the number is necessarily composite for n > 1, a result generalised in our note to [11.1]. 

 

Reaching back to [3.7] to translate the two brackets, we have: 𝑪𝑪𝒏 = 𝑶𝒏(𝑻𝒏−𝟐 + 𝑻𝒏) [12.1]  

    

 

We can build it out from a unit cube as a crystal lattice of the body-centred cubic type. The cubes share 

only vertices. (In an analogous way, so do the squares in the checkerboard representation of 𝐶𝑆𝑛. ) 

 

 
 

We shall develop these two approaches, generating 𝐶𝐶𝑛 first by addition, second by subtraction. 

 

Here is 𝐶𝐶3 from the same viewpoint: 

 

 
 

 

To perform a subtraction, we start with our outer cube, 𝐶2𝑛−1, and take away what the algebra shows to 

be 𝑃𝑦𝑟𝑛−1 lots of (6 + 12).   

 

We illustrate this result for 𝑛 = 3, taking sections perpendicular to a 4-axis.  

 

The figure shows 𝐶𝐶2. We look down a 3-

axis. Thus the central cube and the one behind 

it are hidden. There is a cube for each vertex 

of the central cube, therefore 1 + 8 = 9  in 

total. 

 

We can also think of the figure as a 3-cube 

from which we’ve subtracted a cube for each 

face and each edge of the central cube, again 

giving 33 − (6 + 12) = 9. 

Thinking in terms of CH numbers, the outer ring just 

account for 1 cube; to the inner ring, we must add 2; to 

the central ring, a further 2, giving a total of: 

 

2𝐶𝐻1 + 2𝐶𝐻2 + 𝐶𝐻3 = 35. 

 

This generalises as: 

 

                   𝑪𝑪𝒏 = 𝟐 ∑ 𝑪𝑯𝒊
𝒊=𝒏−𝟏
𝒊=𝟏 + 𝑪𝑯𝒏.  [12.2] 

 

Bearing in mind [10.1], we see how this expression 

yields a sum of two consecutive cubes. 
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Having found the number of spaces in one way, we now do so in another: 

 

 
We need four identities. [2.2], combined with the definition of a triangle number, allows us to write the 

sum in terms of triangle numbers. [3.8] and [3.9] enable us to write these in terms of 𝑇1 and 𝑇2. By [3.5] 

we translate the total into 18(𝑆1 + 𝑆2), which is 18𝑃𝑦𝑟2. Convince yourself that the argument 

generalises. 

 

But we demonstrate the result more simply below. 

 

Our formula is thus:                                                                   𝑪𝑪𝒏 = 𝑪𝟐𝒏−𝟏 − 𝟏𝟖𝑷𝒚𝒓𝒏−𝟏. [12.3] 

 

This is analogous to [5.3]: 

                                 𝐶𝑆𝑛 = 𝑆2𝑛−1 − 4𝑇𝑛−1. 

 

In place of the 12 edges and 6 faces of the cube, we have the 4 sides of the square. 

 

Adding the expressions for two consecutive cubes from [9.9], we have: 

       𝟐𝑷𝒚𝒓𝒏−𝟏 + 𝑶𝒄𝒕𝒏−𝟏 + 𝑶𝒄𝒕𝒏 = 𝑪𝑪𝒏.   [12.4]  

 

Concerning the difference of two centred cubes, the algebra throws up one interesting identity: 

 

       𝑪𝑪𝒏+𝟑 − 𝑪𝑪𝒏 = 𝟏𝟖(𝑺𝒏+𝟏 + 𝟏).       [12.5] 

 

Confirm that the general formula is: 𝐶𝐶𝑎 − 𝐶𝐶𝑏 = (𝑎 − 𝑏)[2(𝑎2 + 𝑎𝑏 + 𝑏2) − 3(𝑎 + 𝑏 − 1)]. 
[9.4] corresponds to the case 𝑎 = 𝑏 + 3. 
 

A further identity is:     𝑪𝑪𝒏 = 𝑶𝒏𝑺𝒏 − 𝑻𝟐(𝒏−𝟏).                     [12.6] 
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We use this equivalence to demonstrate [12.3]. We begin with the dissection of Man-Keung Siu, which 

leads to this cuboid, containing 6 pyramids. Arranging three cuboids and the prism as shown on the right, 

we find that the assemblage exceeds the required cube by exactly the amount by which it is deficient. 

 

 

 

 

 

 

 

The centred cube to modulo 3 & modulo 4 

 

See the table beneath. Since 𝐶𝐻𝑛 is gnomon to a cube, and 𝐶𝐶𝑛 = 𝐶𝑛−1 + 𝐶𝑛, we can construct the cycle 

for 𝐶𝑛 by deriving a cumulative total from the first line, and 𝐶𝐶𝑛 by adding consecutive pairs of values in 

the second line. 

 

                 To modulo 3:   To modulo 4 

 

𝐶𝐻𝑛:  1  1  1  1  1  1  1  1  1  ...      𝐶𝐻𝑛:    1  3  3  1  1  3  3  1  1  3  3  1  ...      

𝐶𝑛:     1  2  0  1  2  0  1  2  0  ...      𝐶𝑛:       1  0  3  0  1  0  3  0  1  0  3  0  ... 

𝐶𝐶𝑛:   1  0  2  1  0  2  1  0  2  ...      𝐶𝐶𝑛:    1  1  3  3  1  1  3  3  1  1  3  3  ... 

 

 

This describes a square prism from  

which a rectangular prism has been 

cut. The consecutive defining cubes  

are shown on the right for 

comparison. Note that the green part 

on the left is of equal volume to that 

on the right. 
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                   Chapter 13 

 

   The Cuboctahedron, 𝐶𝑂𝑛 
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The regular octahedron and cube are dual solids.  
We shall take the hybrid form, the cuboctahedron,  

the solid of interpenetration of the two.  

It is a uniform solid with 8 triangular and 6 square  

faces. We shall carve it out of a close packing of  

spheres.  

 

 

 

  

 

 

In the following view we look down on a triangular face and colour-code horizontal layers. 

  

 
 

 

 

 

Taking the numbers of spheres in each row of each layer in cuboctahedra of consecutive size, we have: 
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1 

 

1 2 

2 3 2 

1 2 

 

1 2 3 

2 3 4 3 

3 4 5 4 3 

2 3 4 3 

1 2 3 

 

1 2 3 4 

2 3 4 5 4 

3 4 5 6 5 4 

4 5 6 7 6 5 4 

3 4 5 6 5 4 

2 3 4 5 4 

1 2 3 4 

 

1 2 3 4 5 

2 3 4 5 6 5 

3 4 5 6 7 6 5 

4 5 6 7 8 7 6 5 

5 6 7 8 9 8 7 6 5 

4 5 6 7 8 7 6 5 

3 4 5 6 7 6 5 

2 3 4 5 6 5 

1 2 3 4 5 

  

 

 

 

 

This gives us a grand total for our cuboctahedron number,  

                                                                                                   𝑪𝑶𝒏 = 𝑪𝒏 + 𝑪𝒏−𝟏 + 𝟒𝑷𝒚𝒓𝒏−𝟏,  [13.1] 

or, substituting from [8.3]:                                              𝑪𝑶𝒏 = 𝑪𝒏 + 𝑪𝒏−𝟏 + 𝑻𝒆𝒕𝟐(𝒏−𝟏), [13.2] 

or, in standard algebra: 

 𝐶𝑂𝑛 =
10𝑛3−15𝑛2+11𝑛−3

3
.          

 

From the section on the centred cube, we can also write: 

 

                                                                                𝑪𝑶𝒏 = 𝐶𝐶𝑛 + 4𝑃𝑦𝑟𝑛−1 = 𝑪𝑪𝒏 + 𝑻𝒆𝒕𝟐(𝒏−𝟏). [13.3] 

 

This formula may be confirmed by the method of finite differences. 

 

The gnomon to the cuboctahedron encases it completely. The figure below shows part of a net of the 

shell. The dotted spheres coincide in pairs on an edge. Each of 8 triangular faces shares 3 vertices with 

others but one vertex is shared by two triangles so we must subtract 
3×8

2
 units from the triangle totals. The 

1 2 3 4 5 

2 3 4 5 6 5 

3 4 5 6 7 6 5 

4 5 6 7 8 7 6 5 

5 6 7 8 9 8 7 6 5 

4 5 6 7 8 7 6 5 

3 4 5 6 7 6 5 

2 3 4 5 6 5 

1 2 3 4 5 

 

1 2 3 4 5 

2 3 4 5 6 5 

3 4 5 6 7 6 5 

4 5 6 7 8 7 6 5 

5 6 7 8 9 8 7 6 5 

4 5 6 7 8 7 6 5 

3 4 5 6 7 6 5 

2 3 4 5 6 5 

1 2 3 4 5 

 

In the five sets, we’ve picked out in red numbers summing to a CH 

number. In the last example we’ve shown that these palindromic runs 

also occur in a gnomonic arrangement. 

 

To see how the CH numbers arise, label as follows: 

 

5     6     7     8     9     8     7     6     5 
𝑛 + 1                             2𝑛 + 1  2𝑛                         𝑛 + 1 

          𝑇2𝑛+1 − 𝑇𝑛                              𝑇2𝑛 − 𝑇𝑛 
                                 

                                (𝑇2𝑛 + 𝑇2𝑛+1) − 2𝑇𝑛 

 

From [4.4] we can write this as 𝑆2𝑛+1 − 2𝑇𝑛. 

Substituting from [3.5], 𝑆2𝑛+1 = 8𝑇𝑛 + 1, we have the result that the 

palindromic run = 8𝑇𝑛 + 1 − 2𝑇𝑛 = 6𝑇𝑛 + 1 = 𝐶𝐻𝑛+1 from [6.2]. 

 

Because these numbers are gnomons to a cube, we can label the top 

left array below 𝑛3 and the bottom left array (𝑛 − 1)3. 

 

The top right and bottom right arrays are equal. We shall show that 

 each = 2𝑃𝑦𝑟𝑛−1. We choose labels as below: 

 

5     6    7    8 
𝑛 + 1                  2𝑛 𝑇2𝑛     − 𝑇𝑛 

5     6    7     
                   𝑇2𝑛−1 − 𝑇𝑛      
5     6                    . 

                             . 

5                      𝑇𝑛+1   − 𝑇𝑛     

 

Sum:               𝑇𝑒𝑡2𝑛 − 𝑇𝑒𝑡𝑛 − 𝑛𝑇𝑛                      
   

We confirm from the algebra that this 

expression= 2𝑃𝑦𝑟𝑛−1. 
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triangle edges must be removed from the 6 squares, which reduces them by two size generations (see 

upper red arrow in figure). Thus we have: 

 

                                                                                        𝐶𝑂𝑛 = 𝐶𝑂𝑛−1 + 2(4𝑇𝑛 − 6 + 3𝑆𝑛−2).  [13.4] 

 

By symmetry we can reverse the roles of square and triangle but must reduce the triangle generation by 3 

(see lower red arrow in figure), leading to: 

 

                                                                                        𝑪𝑶𝒏 = 𝑪𝑶𝒏−𝟏 + 𝟐(𝟑𝑺𝒏 − 𝟔 + 𝟒𝑻𝒏−𝟑). [13.5] 

 

 
 

We can grow 𝐶𝑂𝑛 from the central unit, representing 𝐶𝑂1 by adding the gnomonic shells. The triangles 

become tetrahedra and the squares become pyramids. Using [13.5], we have: 

 

                                                         𝑪𝑶𝒏 = 𝑪𝑶𝟏 + 𝟖(𝑻𝒆𝒕𝒏 − 𝑻𝒆𝒕𝟏) − 𝟏𝟐(𝒏 − 𝟏) + 𝟔𝑷𝒚𝒓𝒏−𝟐. [13.6] 

 

We would like to produce the cuboctahedron by truncating the vertices of an octahedron or, equivalently, 

the vertices of a cube. Unfortunately, the cube and octahedron use a cubic packing of spheres, not the 

close packing we have used for the cuboctahedron. 
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         Chapter 14 

 

 The Icosahedron Shell, 𝑰𝒏 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

                                                               Source: Wikipedia 
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Our last example is not dissected from a packing but we take it because of a significant application. 

 

Capsomeres are the protein units in the surface of a virus. Many viruses take the form of a regular 

icosahedron. The capsomeres are not usually spherical in form but we shall take them to be spheres in 

order to define an icosahedron shell number, 𝐼𝑛 . (There is a simple way to calculate the number of true 

capsomeres due to Caspar & Klug. Go to www.magicmathworks.org , choose ‘Maths club projects’, then 

‘The Scottish bubble and the Irish bubble’, and read chapter 1, ‘Thomson & Tammes’.) In our simplified 

structure, the sequence of sphere arrangements in an icosahedron face goes as follows and the sphere 

count runs as shown beneath. 

 

 
1 per vertex   

                                          

  1 per vertex + 1 per edge 

 

        1 per vertex + 2 per edge + 1 per face 

 

                 1 per vertex + 3 per edge + 3 per face 

 

𝐼1 = 1(12) = 12  

 

 𝐼2 = 1(12) + 1(30) = 42 

 

         𝐼3 = 1(12) + 2(30) + 1(20) = 92 

 

                  𝐼4 = 1(12) + 3(30) + 3(20) = 162 

 

Note that the coefficient of the last bracket is a triangle number. 

 

Applying the method of finite differences, we find that                              𝑰𝒏 = 𝟏𝟎𝑺𝒏 + 𝟐.  [14.1] 

 

Unfortunately, because the shells are not dissected from a packing, they do not nest. There is therefore no 

gnomonic relationship between them. 

 

 

 

 

 

 

 

http://www.magicmathworks.org/
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                 Table of values 

 

We have matched by colour, numbers which occur in more than one set (other than 𝐿𝑛 & 𝑂𝑛). Where 

some mathematical interest attaches to this coincidence we note it below. 

 

𝐿𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝑂𝑛 1 3 5 7 9 11 13 15 17 19 21 23 25 27 

𝑇𝑛 1 3 6 10 15 21 28 36 45 55 66 78 91 105 

𝑆𝑛 1 4 9 16 25 36 49 64 81 100 121 144 169 196 

𝐶𝑆𝑛 1 5 13 25 41 61 85 113 145 181 221 265 313 365 

𝐶𝐻𝑛 1 7 19 37 61 91 127 169 217 271 331 397 469 547 

𝑇𝑒𝑡𝑛 1 4 10 20 35 56 84 120 165 220 286 364 455 560 

𝑃𝑦𝑟𝑛 1 5 14 30 55 91 140 204 285 385 506 650 819 1015 

𝑂𝑐𝑡𝑛 1 6 19 44 85 146 231 344 489 671 891 1156 1469 1834 

𝐶𝑛 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 

𝐶𝐶𝑛 1 9 35 91 189 341 559 855 1241 1729 2331 3059 3925 4941 

𝐶𝑂𝑛 1 13 55 147 309 561 923 1415 2057 2869 3871 5083 6525 8217 

 

9 

𝐶𝐶2 = 𝑆3 . 

To find a centred cube which is a square, the simplest case to examine has the two brackets in the 

defining expression equal: 2𝑛 − 1 = 𝑛2 − 𝑛 + 1, an equation which yields the two values in our table, 

𝑛 = 1, 𝑛 = 2. 

 

10 

𝑇4 = 𝑇𝑒𝑡3. 

The equality 𝑇𝑎 = 𝑇𝑒𝑡𝑏 occurs frequently. It represents a redistribution of prime factors among three 

terms: 3𝑎(𝑎 + 1) = 𝑏(𝑏 + 1)(𝑏 + 2). For example, 𝑇15 = 𝑇𝑒𝑡8: (3)(3 × 5)(24) =  (23)(32)(2 × 5). 
 

19: 

𝐶𝐻3 = 𝑂𝑐𝑡3 . 

The equation 𝐶𝐻𝑛 = 𝑂𝑐𝑡𝑛, i.e. the cubic 2𝑛3 − 9𝑛2 + 10𝑛 − 3 = 0, factorises as  

(𝑛 − 1)(𝑛 − 3)(2𝑛 − 1), giving 1 and 3 as integer solutions. 

 

25: 

𝐶𝑆4 = 𝑆5 . 

This result represents the unique Pythagorean triple where the legs are consecutive. 

 

36: 

𝑆6 = 𝑇8 . 

The lowest square triangle number >1. (They are infinite in number.) 

 

55: 

𝑃𝑦𝑟5 = 𝑇10. 

𝑃𝑦𝑟𝑛 and 𝑇2𝑛 share the factor 𝑛(2𝑛 + 1). The resulting linear equation yields the result 𝑛 = 5, 

which is therefore unique. 

 

𝑇10 is also a sum of consecutive triangles: 𝑇10 = 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6. 
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61: 

𝐶𝐻5 = 𝐶𝑆6 . 

The equation 𝐶𝐻𝑛−1 = 𝐶𝑆𝑛, i.e. the quadratic 𝑛2 − 7𝑛 + 6 = 0, factorises as   
(𝑛 − 1)(𝑛 − 6) = 0, giving solutions 1 and 6. The more general equation 𝐶𝐻𝑎 = 𝐶𝑆𝑏 simplifies to  

3𝑇𝑎−1 = 2𝑇𝑏−1, identifying two triangle numbers in a ratio of small numbers. 

 

91: 

𝐶𝐻6 = 𝑃𝑦𝑟6 . 

The equation 𝐶𝐻𝑛 = 𝑃𝑦𝑟𝑛, i.e. the cubic 2𝑛3 − 15𝑛2 + 19𝑛 − 6 = 0, factorises as 
(𝑛 − 1)(𝑛 − 6)(2𝑛 − 1) = 0, giving 1 and 6 as integer solutions. 

 

𝑇13 = 𝑃𝑦𝑟6. 

The equation 𝑇2𝑛+1 = 𝑃𝑦𝑟𝑛 has the unique solution 𝑛 = 6.  (𝑇2𝑛+1 and 𝑃𝑦𝑟𝑛 share the factor 

(𝑛 + 1)(2𝑛 + 1). ) 

 

Combining those two results, we see without having to solve a new equation, that 𝑛 = 6 is the only 

positive integer for which the equation 𝑇2𝑛+1 = 𝐶𝐻𝑛 holds. 

 

As we proceed along the natural number sequence, extracting the squares as they occur and also the runs 

of numbers in between which sum to squares, we find we have accumulated exactly 5 squares on reaching 

10 and exactly 6 on reaching 13, hence the equalities we have met under the headings ‘55’ and ‘91’: 

 
169: 

𝐶𝐻8 = 𝑆13, 

6𝑇7 + 1 = 8𝑇6 + 1, 

3𝑇7 = 4𝑇6 , again identifying two triangle numbers in a ratio of small numbers. 

 

There is a simple relation between the ratios of consecutive pairs of triangle numbers. Writing out the 

formula for each triangle number in each ratio
𝑇𝑘+1

𝑇𝑘
 and cancelling, we have: 

 

… 𝑇𝑟−2         𝑇𝑟−1              𝑇𝑟         𝑇𝑟+1        𝑇𝑟+2  ... 

...           
𝑟

𝑟−2
          

𝑟+1

𝑟−1
        

𝑟+2

𝑟
         

𝑟+3

𝑟+1
  ... 

 

Adding numerator and denominator of the second red fraction and putting the sum over the same sum for 

the first red fraction, we have the blue fraction in between: 
(𝑟+3)+(𝑟+1)

(𝑟+1)+(𝑟−1)
=

2𝑟+4

2𝑟
=

𝑟+2

𝑟
 . 

 

365 

As mentioned in the text, 𝐶𝑆14 = 𝑆10 + 𝑆11 + 𝑆12, a sum of consecutive squares. Though this example is 

unique in featuring 5 consecutive squares, there is an infinite number of centred square numbers which 
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are sums of 3 consecutive squares. The next biggest is 𝐶𝑆134.  𝐶𝑆134 = 𝑆108 + 𝑆109 + 𝑆110. It turns out 

that, if (𝑦𝑛)2 is the middle of the three squares, and the 𝐶𝑆 suffix is 
3(𝑥𝑛+1)

2
, values are given by this 

recurrence relation:  

 

𝑥𝑛 = 5𝑥𝑛−1 + 4𝑦𝑛−1 

            𝑦𝑛 = 6𝑥𝑛−1 + 5𝑦𝑛−1 

 

1729 

The most celebrated centred cube, the number of Hardy’s taxicab on the occasion of a visit to the ailing 

Ramanujan, who pointed out that it is the smallest number which can be partitioned into a pair of cubes in 

two ways: 93 + 103  and 13 + 123. 

 

With the following Venn diagram we can answer in the negative the question ‘Can a number be a square, 

a centred square and a centred hexagon?’.  

 

 

 

 

 

Following our review of the different number types, we are in a position to express the same relationship 

in several different ways. 

 

𝑇5 + 𝑇6                    = 𝑇𝑒𝑡6 − 𝑇𝑒𝑡4  = (𝑇3)2       = 𝑇8       = 𝑆6       = 𝑃𝑦𝑟6 − 𝑃𝑦𝑟5     = 13 + 23 + 33, 

𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 = 𝑇𝑒𝑡8 − 𝑇𝑒𝑡4 = (𝑇4)2                       = 𝑆10       = 𝑃𝑦𝑟10 − 𝑃𝑦𝑟9   = 13 + 23 + 33 + 43. 

 

We can show that the second equality is the only example of four consecutive triangles summing to a 

square. We have: 

 

(𝑇𝑎 + 𝑇𝑎+1) + (𝑇𝑎+2 + 𝑇𝑎+3) = 𝑆𝑐, 

𝑆𝑎+1 + 𝑆𝑎+3 = 𝑆𝑐 , 

 

corresponding to the Pythagorean triple (𝑎, 𝑎 + 2, 𝑐). Because the two legs have the same parity, they 

must represent a primitive triple scaled. Furthermore, they must both be even. Dividing by 2, we have 
(𝑝, 𝑝 + 1, 𝑐). The only triple in which the legs differ by 1 is (3, 4, 5). Our case is therefore unique. 

 

 

 

 

 

 

25 is the only square which is the sum of two 

consecutive squares. It is not a centred hexagon 

number. The central region must therefore 

remain empty. 
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A note on inequalities: 

 

In chapter 3 we have: 𝑆𝑛   <   2𝑇𝑛     <      𝑆𝑛+1. 

               Differences:        𝑛           𝑛 + 1         

By analogy:                𝐶𝑛 <   6𝑇𝑒𝑡𝑛  <     𝐶𝑛+1. 
               Differences:   n(3n + 2)   𝑛 + 1 

 

Note in passing that 𝑆𝑛+1 − 2𝑇𝑛 = 𝐶𝑛+1 − 6𝑇𝑒𝑡𝑛. 

 

We can extend the inequality:  

                                                                    𝐶𝑛+1              <           6𝑃𝑦𝑟𝑛. 

                Difference:                                            𝑛3 − 2𝑛 − 1                           

 

Note that, for 𝑛 > 5, an increasing number of cubes fall between 𝐶𝑛+1 and 6𝑃𝑦𝑟𝑛. 
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      Lists of identities 

 

In the Table 1 and Table 2 terms to the left of the ‘=’ sign are to be added. In the cells shaded blue the 

identities are what we may call figurate-homogeneous: the figurate number type is of just one kind. 

Green-shaded cells show a simple gnomonic relationship (type (b) in the introduction, ‘simple’ meaning 

of the first order, a parent, not a grandparent or great grandparent). Orange-shaded cells show a 

relationship of the kind 𝑃𝑛−1 + 𝑃𝑛 = 𝑄𝑛 (type (a) in the introduction).  

 

Table 1: Identities involving 2-dimensional figurate numbers only 

 
1 L O T S GG Tr 𝑪𝑺 CH =      Sum No. 

            
1 𝑳𝒏−𝟏         𝑳𝒏 1.1 

            

2  𝑶𝒏−𝟏        𝑶𝒏 2.1 

 𝑳𝒏−𝟏 + 𝑳𝒏 
 

        𝑶𝒏 2.2 

            

 𝑳𝒏  𝑻𝒏−𝟏       𝑻𝒏 3.1 

      𝑻𝒓𝒎−𝟏,𝒏

+ 𝑻𝒓𝒎,𝒏 
   𝑻𝑻𝒓𝒎,𝒏 3.2 

  𝑶𝒏 𝑻𝒏−𝟐       𝑻𝒏 3.3 

 𝟑𝑳𝒏−𝟏  𝑻𝒏−𝟑       𝑻𝒏 3.4 

   𝑻𝒏−𝟏

+ 𝑻𝒏 

 

      𝑺𝒏 3.5 

1   8𝑻𝒏 

 

      𝑺𝟐𝒏+𝟏 3.6 

   𝑻𝒏−𝟏 

+𝑻𝒏+𝟏 

      𝟐𝑻𝒏 + 𝟏 3.7 

   3𝑻𝒏 

+𝑻𝒏+𝟏 

 

      𝑻𝟐𝒏+𝟏 3.8 

   𝑻𝒏−𝟏 

+3𝑻𝒏 

 

      𝑻𝟐𝒏 3.9 

    

 

𝑺𝒕𝑺𝒏 

 

     𝑺𝒕𝒏 3.10 

 𝑳𝒏   𝑺𝒏      𝟐𝑻𝒏 3.11 

   𝑻𝑺𝒏

− 𝑻𝑺𝒏−𝟏 

      𝑺𝒏 3.12 

   𝑻𝒏−𝟏

+ 𝟔𝑻𝒏

+ 𝑻𝒏+𝟏 

      𝑺𝟐𝒏+𝟏 3.13 

      𝟑𝑻𝒓𝟐𝒏,𝒏    𝑻𝟑𝒏 3.14 

   𝟑(𝑻𝟐𝒏 −
𝑻𝒏) 

      𝑻𝟑𝒏 3.15 

   𝟑𝑻𝒏 3𝑺𝒏      𝑻𝟑𝒏 3.16 

   𝟑(𝑻𝒏−𝟏

+ 𝟐𝑻𝒏) 

      𝑻𝟑𝒏 3.17 

   𝑻𝟑(𝒏−𝟏)   3𝑻𝒓𝟑𝒏−𝟏,𝟑𝒏−𝟐    𝑻𝟑𝒏 3.18 

   𝑻𝟑(𝒏−𝟏)

+ 𝟑 

(𝑻𝟑𝒏−𝟏

− 𝑻𝟑𝒏−𝟐) 

      𝑻𝟑𝒏 3.19 

1      𝟑𝑻𝒓𝟐𝒏+𝟏,𝒏+𝟏    𝑻𝟑𝒏+𝟏 3.20 

1   𝟑(𝑻𝟐𝒏+𝟏

− 𝑻𝒏+𝟏) 

      𝑻𝟑𝒏+𝟏 3.21 

-2   𝟑𝑻𝒏+𝟏 3𝑺𝒏      𝑻𝟑𝒏+𝟏 3.22 

-2   𝟑(𝑻𝒏−𝟏

+ 𝑻𝒏

+ 𝑻𝒏+𝟏) 

      𝑻𝟑𝒏+𝟏 

(Compare 

6.3) 

3.23 
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   𝑻𝟑𝒏−𝟐   3𝑻𝒓𝟑𝒏,𝟑𝒏−𝟏    𝑻𝟑𝒏+𝟏 3.24 

   𝑻𝟑𝒏−𝟐

+ 𝟑(𝑻𝟑𝒏

− 𝑻𝟑𝒏−𝟏) 

      𝑻𝟑𝒏+𝟏 3.25 

      𝟑𝑻𝒓𝟐𝒏+𝟏,𝒏    𝑻𝟑𝒏+𝟐 3.26 

   𝟑(𝑻𝟐𝒏+𝟏 −
−𝑻𝒏) 

      𝑻𝟑𝒏+𝟐 3.27 

   𝟑𝑻𝒏 𝟑𝑺𝒏+𝟏      𝑻𝟑𝒏+𝟐 3.28 

   𝟑(𝟐𝑻𝒏

+ 𝑻𝒏+𝟏) 

      𝑻𝟑𝒏+𝟐 3.29 

   𝑻𝟑𝒏−𝟏   3𝑻𝒓𝟑𝒏+𝟏,𝟑𝒏    𝑻𝟑𝒏+𝟐 3.30 

   𝑻𝟑𝒏−𝟏

+ 𝟑 

(𝑻𝟑𝒏+𝟏

− 𝑻𝟑𝒏) 

      𝑻𝟑𝒏+𝟐 3.31 

            

  𝑶𝒏  𝑺𝒏−𝟏      𝑺𝒏 4.1 

     𝑮𝑮𝒍,𝒎 + 𝑮𝑮𝒎,𝒏 

 

    𝑮𝑮𝒍,𝒏 4.2 

 𝟒𝑳𝒏−𝟏   𝑺𝒏−𝟐      𝑺𝒏 4.3 

  𝟑𝑶𝒏−𝟏  𝑺𝒏−𝟑      𝑺𝒏 4.4 

          See text 4.5 

            

   𝑻𝒏−𝟐 

+𝟐𝑻𝒏−𝟏 

+𝑻𝒏 

      𝑪𝑺𝒏 5.1 

1   4𝑻𝒏−𝟏       𝑪𝑺𝒏 5.2 

   𝟒𝑻𝒏−𝟏    𝑪𝑺𝒏   𝑺𝟐𝒏−𝟏 5.3 

          See text 5.4 

-1 𝑳𝒏      𝑪𝑺𝒏   𝑻𝟐𝒏−𝟏 5.5 

   8𝑻𝟐𝒏−𝟏 

 

   𝑪𝑺𝒏+𝟏   𝑪𝑺𝟑𝒏 5.6 

-1    𝑺𝟒𝒏−𝟏   𝑪𝑺𝒏+𝟏   𝑪𝑺𝟑𝒏 5.7 

   𝑻𝒏+𝟏 + 

2𝑻𝟐𝒏+𝟏 

 

      𝑻𝟑𝒏+𝟐 5.8 

          See text 5.9 

1    𝑺𝟐𝒏−𝟏      𝟐𝑪𝑺𝒏 5.10 

            

   𝟏𝟐𝑻𝒏     7𝑪𝑯𝒏+𝟏  𝑪𝑯𝟑𝒏+𝟐 6.1 

1   𝟔𝑻𝒏       𝑪𝑯𝒏+𝟏 6.2 

1   𝟗𝑻𝒏       𝑻𝟑𝒏+𝟏 6.3 

          See text 6.4 

   𝟑(𝟐𝑻𝒏

+ 𝑻𝒏+𝟏) 

      𝑻𝟑𝒏+𝟐 6.5 

   𝑻𝒌+𝟏𝑻𝒏

+ 𝑻𝒌𝑻𝒏+𝟏 

      𝑻𝒌𝒏+(𝒌+𝒏) 6.6 

   (𝑻𝒏−𝟏)𝟐

+ (𝑻𝒏)𝟐 
      𝑻𝑺𝒏

 6.7 

   𝑻𝒂−𝟏𝑻𝒃−𝟏

+ 𝑻𝒂𝑻𝒃 
      𝑻𝒂𝒃 6.8 

   (𝑻𝒏)𝟒-

(𝑻𝒏−𝟏)𝟒 

      𝑻𝑺𝒏
𝑪𝒏 6.9 

   𝑻𝒏 𝑺𝟐𝒏+𝟏      𝑻𝟑𝒏+𝟏 6.10 

   𝟐𝑻𝒏−𝟏    𝑪𝑺𝒏   𝑪𝑯𝒏 6.11 

    𝑺𝟐𝒏−𝟏   𝑪𝑺𝒏   𝟐𝑪𝑯𝒏 6.12 

   𝑻𝒏−𝟐

+ 𝟒𝑻𝒏−𝟏

+ 𝑻𝒏 

      𝑪𝑯𝒏 6.13 

   𝟑𝑻𝒏−𝟏     𝑪𝑯𝒏  𝑻𝟑𝒏−𝟏 6.14 
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Table 2: identities involving 3-dimensional figurate numbers 

 
1 1-D 

figure 

(× 

factor) 

2-D  

figure 

(× 

factor) 

3-D 

figure 

𝑻𝒆𝒕𝒏 𝑷𝒚𝒓𝒏 𝑶𝒄𝒕𝒏 𝑪𝒏 𝑪𝑪𝒏 𝑪𝑶𝒏 =    Sum No. 

  𝑻𝒏  𝑻𝒆𝒕𝒏−𝟏       𝑻𝒆𝒕𝒏 7.1 

  𝑺𝒏  𝑻𝒆𝒕𝒏−𝟐       𝑻𝒆𝒕𝒏 7.2 

1  𝟑𝑻𝒏−𝟏  𝑻𝒆𝒕𝒏−𝟑       𝑻𝒆𝒕𝒏 7.3 

             

  𝑺𝒏   𝑷𝒚𝒓𝒏−𝟏      𝑷𝒚𝒓𝒏 8.1 

    𝑻𝒆𝒕𝒏−𝟏

+ 𝑻𝒆𝒕𝒏 

      𝑷𝒚𝒓𝒏 8.2 

    𝑻𝒆𝒕𝟐𝒏       𝟒𝑷𝒚𝒓𝒏 8.3 

           See text 8.4 

           See text 8.5 

             

     𝑷𝒚𝒓𝒏−𝟏

+ 𝑷𝒚𝒓𝒏 

     𝑶𝒄𝒕𝒏 9.1 

  𝑺𝒏   𝟐𝑷𝒚𝒓𝒏−𝟏      𝑶𝒄𝒕𝒏 9.2 

 𝑳𝒏   𝟒𝑻𝒆𝒕𝒏−𝟏       𝑶𝒄𝒕𝒏 9.3 

  𝑪𝑺𝒏    𝑶𝒄𝒕𝒏−𝟏     𝑶𝒄𝒕𝒏 9.4 

           See text 9.5 

           See text 9.6 

    𝟒𝑻𝒆𝒕𝒏  𝑶𝒄𝒕𝒏+𝟏     𝑻𝒆𝒕𝟐𝒏+𝟏 9.7 

 𝑳𝒏+𝟏   𝟖𝑻𝒆𝒕𝒏       𝑻𝒆𝒕𝟐𝒏+𝟏 9.8 

             

  𝑪𝑯𝒏     𝑪𝒏−𝟏    𝑪𝒏 10.1 

1  𝟔𝑻𝒏−𝟏     𝑪𝒏−𝟏    𝑪𝒏 10.2 

 𝑳𝒏   𝟔𝑻𝒆𝒕𝒏−𝟏       𝑪𝒏 10.3 

2  𝟔𝑺𝒏−𝟏     𝑪𝒏−𝟐    𝑪𝒏 10.4 

           See text 10.5 

 𝑶𝒏    𝟐𝟒 𝑷𝒚𝒓𝒏−𝟏      𝑪𝑶𝒏
 10.6 

 𝑶𝒏  𝟖𝑶𝒏𝑻𝒏−𝟏 

 

       𝑪𝑶𝒏
 10.7 

    𝟐𝑻𝒆𝒕𝒏−𝟏  𝑶𝒄𝒕𝒏     𝑪𝒏 10.8 

    𝟐𝑻𝒆𝒕𝒏−𝟏 𝑷𝒚𝒓𝒏−𝟏

+ 𝑷𝒚𝒓𝒏 

     𝑪𝒏 10.9 

    𝑻𝒆𝒕𝒏−𝟐

+ 𝟒𝑻𝒆𝒕𝒏−𝟏

+ 𝑻𝒆𝒕𝒏 

      𝑪𝒏 10.10 

  𝑺𝒏  𝟐𝑻𝒆𝒕𝒏−𝟏 𝟐𝑷𝒚𝒓𝒏−𝟏      𝑪𝒏 10.11 

             

           See text 11.1 

           See text 11.2 

           See text 11.3 

             

   𝑶𝒏𝑻𝒏−𝟐

+ 𝑶𝒏𝑻𝒏 

       𝑪𝑪𝒏 12.1 

           See text 12.2 

     𝟏𝟖𝑷𝒚𝒓𝒏−𝟏   𝑪𝑪𝒏   𝑪𝟐𝒏−𝟏 12.3 

     𝟐𝑷𝒚𝒓𝒏−𝟏 𝑶𝒄𝒕𝒏−𝟏

+ 𝑶𝒄𝒕𝒏 

    𝑪𝑪𝒏 12.4 

  𝟏𝟖(𝑺𝒏+𝟏

+ 𝟏) 

     𝑪𝑪𝒏   𝑪𝑪𝒏+𝟑 12.5 

  𝑻𝟐(𝒏−𝟏)      𝑪𝑪𝒏   𝑶𝒏𝑺𝒏 12.6 

             

           See text 13.1 

           See text 13.2 

    𝑻𝒆𝒕𝟐(𝒏−𝟏)    𝑪𝑪𝒏   𝑪𝑶𝒏 13.3 

           See text 13.4 

           See text 13.5 

           See text 13.6 

             

2  𝟏𝟎𝑺𝒏         𝑰𝒏 14.1 
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