Fibonomino (= Fibonacci) identities

If we accept that fibonominoes characterise Fibonacci numbers correctly, we can write all the following
equations with capital Fs. The proofs are proofs-without-words. In cases 3 and 4 a complete proof would
proceed by induction and we would have to justify the inductive step by showing that the fibonominoes
add in the way assumed.
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The proof follows immediately from the defining equation:
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The algebra look like this:
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The geometry looks like this:
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As you see, by duplicating f,,.,, we create the grey
block, f,,+-, giving the sequence starting fi,,1, fus+2: - »
which will continue to produce new fibonominoes by the
addition of consecutive blocks.

By duplicating f;, ., we get the fibonomino two beyond
the last one added, f;,,5 in the figure.

The terms added are gnomons to
existing squares. Consecutive terms
add alternately to the north-east and
south-west square. The two squares
belong to the fibonomino f,,,,,.They
overlap in a single cell. Thus the sum

IS fon+1-1.

The arrows are there to show how each block
added completes a difference of two squares,
that is, the addition of f,,_, completes f,,,.



