If we accept that fibonominoes characterise Fibonacci numbers correctly, we can write all the following equations with capital Fs. The proofs are proofs-without-words. In cases $\mathbf{3}$ and $\mathbf{4}$ a complete proof would proceed by induction and we would have to justify the inductive step by showing that the fibonominoes add in the way assumed.

1. $f_{n}+f_{n+1}+f_{n+3}=f_{n+4}$

The proof follows immediately from the defining equation:
$\left(f_{n}+f_{n+1}\right)+f_{n+3}$
$f_{n+2}+f_{n+3}$
f_{n+4}

The upper figures show the case where the smallest fibonomino is
 even.

The lower figures show the case where the smallest fibonomino is odd.

2. $f_{n}+2 f_{n+1}+f_{n+2}+f_{n+3}+\cdots+f_{n+k}=f_{n+k+2}$

The algebra look like this:

$$
f_{n}+f_{n+1}\left|+f_{n+1}\right|+f_{n+2}\left|+f_{n+3}\right|+\cdots+f_{n+k}
$$

The geometry looks like this:

3. $\sum_{j=1}^{j=n} f_{2 j}=f_{2 n+1}-1$

4. $\sum_{j=1}^{j=n} f_{2 j-1}=f_{2 n}$

As you see, by duplicating f_{n+1}, we create the grey block, f_{n+2}, giving the sequence starting f_{n+1}, f_{n+2}, \ldots, which will continue to produce new fibonominoes by the addition of consecutive blocks.

By duplicating f_{n+1} we get the fibonomino two beyond the last one added, f_{n+3} in the figure.

The terms added are gnomons to existing squares. Consecutive terms add alternately to the north-east and south-west square. The two squares belong to the fibonomino $f_{2 n+1}$. They overlap in a single cell. Thus the sum is $f_{2 n+1}-1$.

The arrows are there to show how each block added completes a difference of two squares, that is, the addition of $f_{2 n-1}$ completes $f_{2 n}$.

