$\left.\begin{array}{cc|c|c|c|c|c|c|c|c|c}\hline 0 & F_{0} & +0^{2} & -0^{2} & & & & & & & \\ \hline 1 & F_{1} & +1^{2} & & +1^{2} & -1^{2} & & & & & \\ \hline 1 & F_{2} & & +1^{2} & +1^{2} & & +1^{2} & -1^{2} & & & \\ \hline 2 & F_{3} & & & & +2^{2} & +2^{2} & & +2^{2} & -2^{2} & \\ \hline 3 & F_{4} & & & & & & +3^{2} & +3^{2} & & \\ \hline 5 & F_{5} & & & & & & & & +5^{2} & \\ \hline \vdots & F_{0} & F_{1} & F_{2} & F_{3} \\ 1 & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & \ldots \\ 8\end{array}\right]$

Generalising from the table, we have:
$F_{2 n-1}=F_{n-1}{ }^{2}+F_{n}{ }^{2}$.
$F_{2 n}=-F_{n-1}^{2}+F_{n+1}^{2}=\left(F_{n+1}+F_{n-1}\right)\left(F_{n+1}-F_{n-1}\right)=\left(F_{n+1}+F_{n-1}\right) F_{n}$.
When we add the two to get $F_{2 n+1}$, we see how the term which cancels corresponds to the 'peg' of a sum-of-squares fibonomino fitting the 'hole' of a difference-of-squares fibonomino.

It is less clear why the result of this sum:
$F_{2 n}=-F_{n-1}{ }^{2}+F_{n+1}{ }^{2}$
$F_{2 n+1}=F_{n}{ }^{2}+F_{n+1}{ }^{2}$
is a difference of squares. We combine the difference-of-two-squares identity with the defining Fibonacci identity as above :
$F_{2 n}=F_{n+1}^{2}-F_{n-1}^{2}=\left(F_{n+1}+F_{n-1}\right)\left(F_{n+1}-F_{n-1}\right)$
$=\left(F_{n+1}+F_{n-1}\right) F_{n}=F_{n} F_{n+1}+F_{n-1} F_{n}$
The sum is now:
$F_{n} F_{n+1}+F_{n-1} F_{n}$
$F_{n}{ }^{2}+F_{n+1}{ }^{2}$
Total:
$F_{n}\left(F_{n-1}+F_{n}\right)+F_{n+1}\left(F_{n}+F_{n+1}\right)=F_{n} F_{n+1}+F_{n+1} F_{n+2}$
$=F_{n+1}\left(F_{n}+F_{n+2}\right)=F_{n+2}{ }^{2}-F_{n}{ }^{2}$, which is the expected value of $F_{2 n+2}$.
(The expressions in blue are analogous to those in red.)

