
                                            DISSECTION SEQUENCES 
 

Dissection is the art of cutting up one shape and using the pieces to make another. In the 

dissection of plane figures the invariant is area. If the shape is a polygon, the number of 

pieces needed is always finite. The art lies in using the fewest. Over the years there have been 

many examples in Symmetry+ . The classic account is ‘Geometric Dissections’ (1972), in 

which Harry Lindgren reveals the techniques he used. Lindgren’s mantle passed to Greg N. 

Frederickson, whose ‘Dissections: plane and fancy’ (1997) charts the history of the art, 

extends Lindgren’s toolbox and displays the results. Like Lindgren and Frederickson, we 

shall be concerned only with regular polygons, (and in our case only with the convex, not the 

star, types.) 

 

In this piece we extend the idea from single-stage to multi-stage dissections, sequences in 

which we iterate some basic operation. There are three types. We represent each 

schematically and symbolically then give examples. {𝑎} stands for a regular a-gon. 
{𝑎}, {𝑎′}, {𝑎′′}, … are similar. 

 

(1) Step shift sequences 

 
Here the polygons we start with are not congruent but are similar. 

 

 

                                                                                                                              

                                                           {𝑎} + {𝑎′}                 ≡ {𝑎′′} 

 

 

                                                                 {𝑎′} + {𝑎′′}        ≡ {𝑎′′′} 

 

 

                             {𝑎′′} + {𝑎′′′}  ≡ {𝑎′′′′}    
 

 
In the following example, we take a standard Pythagoras dissection through three iterations - 

but could continue ad infinitum. A particular ratio is chosen for edge length of larger square 

to edge length of smaller square in each pair, in my case 4:3. Extra pieces are introduced at 

each stage till, in the final stage, all the pieces are in place. I managed with 11. All the pieces 

are based on the 3:4:5 right triangle. 6 are similar versions of it; the other 5 are either trapezia 

which complete such triangles or composites of such triangles and trapezia. Try to work out 

the shapes of the pieces needed and cut them out from thick card.  

 

 

 

 
 

 

 

 

 

 

 

 

Notice that the sloping 

square is made by 

translating the bottom 

left triangle to a 

position top right, and 

the bottom right 

triangle to a position 

top left. 



 

(2) Dissection hierarchies 
 

The idea here is to turn k congruent polygons into one, then k of those into one, then k of 

those into one, ... ad infinitum: 

 

                                                                        
  

                                                                                              
 

 
 

                    𝑘2{𝑎}                             ≡             𝑘{𝑎′}                       ≡                 {𝑎′′}      

 

Our plan is to create infinite trees in which we iterate the replication process in a hierarchical 

manner. Before listing examples, I bring together some simple principles which are scattered 

over many past issues of Symmetry+. 

 

We find that all the polygons to be found in regular and semiregular tessellations: the 

equilateral triangle, the square, the regular hexagon, octagon and dodecagon, can be dissected 

down the generations if cut into subsets of just 4 shapes: the 30° and 45° rhombuses and the 

30° − 60° and 45° − 45° right triangles.   

 

                                                                       
  

 What do these 4 shapes have in common? 

 

Following Solomon W. Golomb, who coined the term, they’re all rep-tiles: we can make 

bigger, similar shapes by aggregating copies of the original. These are the RNA which make 

our breeding programme possible. This self-replicating property applies to all triangles, 

including therefore our two right-angled ones, and all parallelograms, including therefore our 

two rhombuses. As shown by the dotted lines below, the second fact follows from the first. 

The replication numbers in both cases are the squares: 4, 9, 16, … Accordingly we say that 

these shapes are ‘rep-4’, ‘rep-9’, ‘rep-16’ and so on.    

 

 

 

 

                   

The 45° − 45° − 90° triangle is special             The 30° − 60° − 90° triangle is special 

because it’s also rep-2:                                        because it’s also rep-3: 

 

                     

 

 

 



Our 4 elementary shapes contain only 4 non-obtuse angles. All are unit fractions of a half-

turn. All stand in simple ratios to each other. (Note the top-right to bottom-left symmetry axis 

to the table.)   

 

 30° 45° 60° 90° 

30°  3:2 2:1 3:1 

45°   4:3 2:1 

60°    3:2 

90°     

 

 

triangle, or by its middle side, to produce an equilateral triangle; and those pairs can each 

combine as the original rhombus:  

      
     

 

 

 

 

 

 

 

 

 

 

 

If a 90° isosceles triangle presents a short side to the boundary and we flip it over, we scale 

the polygon by √2 and the branching number of our dissection tree is 2. If we do the same 

with the 120° isosceles triangle, the factor is √3 and the branching number 3. These options 

give 3 families of edge length in terms of a unit: integers, integers × odd powers of √2 and 

integers × odd powers of √3. In our trees, then, the scale factor is √𝑘 , the branching number 

k and, if we take a horizontal section through a vertical tree, what is conserved is area.  

 

We start at level 0 and descend the trees, level by level. The polygons on level 0, the set 𝑃0 , 

comprising the k polygons 𝑃0.1, 𝑃0.2, 𝑃0.3, … , 𝑃0.𝑘, may or may not all be dissected into the 

same set of pieces. But those on levels 1, 2, 3, … are.  

 

Level: 0         Polygon:      𝑃0.1, 𝑃0.2, 𝑃0.3, … , 𝑃0.𝑘   

 

 

           1                                             𝑃1.1                     𝑃1.2                   𝑃1.3,  ...., 𝑃1.𝑘 

 

 

           2                                                                      𝑃2.1 

 

 

If the 𝑃0 polygons are rep-k, we can always achieve an infinite hierarchy with this branching 

number. (As noted, 𝑘 = 𝑛2 takes care of all triangles and parallelograms.) 

 

The same is true if the 𝑃0 polygons are not rep-tiles themselves but can be dissected into 

them.  

As a result, they may be arranged in many combinations 

round a vertex. 

 

We can obtain four 30° − 60° − 90° triangles by slicing 

the 60° rhombus along both diagonals. Where this 

triangle appears in pairs in our dissections, it is joined 

either by its shortest side, to produce a 120° isosceles 

triangle, 

In the same way, a pair of 45° − 45° − 90° triangles (which we 

can also call 90° isosceles triangles) often appear as the square 

from which they might have been dissected:   

 



 

Where it is instructive, we shall give the substitution rules by which a larger polygon is 

obtained from  a smaller one. 

 

Because every triangle is a rep-tile of order 𝑠2, and we can divide every regular n-gon into n 

isosceles triangles, we can produce an infinite tree with branching number 𝑘 = 𝑠2 for every 

regular polygon: 

 

 
 

 

 

The equilateral triangle, k = 3 

 

 

 

 

 

 

 

 

 

 

 

                                                         

The square, k = 2 

 

 

 

 

 

 

 

 

 

  

We split it into two 30° −
60° − 90°  triangles. These 

are rep-3 so we can achieve a 

tree with this branching 

number. Accordingly, the 

number of 𝑃0 tiles in 

successive generations run 6, 

18, 54, ...  

 

In the same way, we can split 

the square into two isosceles 

right triangles and take 

advantage of the fact that these 

are rep-2 to create an infinite 

tree with branching number 2. 

The tile numbers are powers of 

2. 

 



The hexagon, k = 3 

 

We give three dissections. 

 

  

 

 

 

 

So we can achieve a branching number of k = 3. And the number of tiles runs 18, 54, 162, ... 

 

(b) Consider this 𝑃0 set of 15 tiles. Each is rep-𝑛2. But we find we can produce both the 𝑃1 

and 𝑃2 sets with k = 3. This means that we can get to 𝑃3 to 𝑃5 to 𝑃7, ... just by scaling 𝑃1; and 

from 𝑃4 to 𝑃6 to 𝑃8, ... just by scaling 𝑃2. Thus, by this leapfrogging process, we can achieve 

all 𝑃𝑛 to 𝑛 = ∞. 

 

 
 

 

 

The number of tiles runs 15, 45, 135, ... , a small improvement on the preceding. 

 

We shall dignify the leapfrog process as a theorem. 

 

The leapfrog theorem: 

 

If we have k congruent polygons, 𝑃0.1, 𝑃0.2, 𝑃0.3,…, 𝑃0.𝑘, dissected into any set of triangles and 

parallelograms, and find we can assemble from those k a single similar polygon, 𝑃1.1, and 

from k copies of this, 𝑃1.1, 𝑃1.2, 𝑃1.3, … , 𝑃1.𝑘, a similar polygon 𝑃2.1, then we can assemble a 

(a) The regular hexagon is not a rep-tile. We can always split it 

into 30° − 60° − 90° triangles as we did with the equilateral 

triangle. And we can reduce their number in this case by 

dissecting the hexagon into triangles of different sizes: 

 



set 𝑃𝑛 from 𝑘𝑛−1 copies of the set 𝑃0 for all values of n. 

 

Proof: 

 

Any triangle, whence also any parallelogram, has the property that 𝑘2 congruent copies can 

be assembled into a single similar shape. (It is a rep-tile.) Thus, by scaling, we can assemble  

from 𝑘2 copies of set 𝑃1 the set 𝑃3, whence also 𝑃5, 𝑃7, 𝑃9, … . But we know we can assemble 

the set 𝑃2 , hence by scaling, 𝑃4 𝑃6 𝑃8, ... . Thus we can assemble any 𝑃𝑛 set from 𝑘𝑛−1 copies 

of the 𝑃0 set. 

 

A corollary: 

 

Where the 𝑃0 set are dissected identically, we only need establish the 𝑃1 set to ensure an 

infinite tree because we can take our first inductive step from 𝑃0 to 𝑃2. 

 

In these cases the substitution rules relate alternate generations. 

 

(c) The next dissection is interesting because of the substitution rules. 

 

  
 

The octagon, k = 2 

 

We give two alternatives. 

 



(a) 

 
 

To draw a 𝑃2 octagon, complete the squares by adding 8 more right isosceles triangles, and 

put 45° rhombuses in between. 

 

(b) Here is an alternative. We first give the substitution rules. The number of pieces in each 

𝑃0 shape goes down from 8 to 7: 

 

 

Again we can 

dissect the figure 

into rep-tiles, and 

we can achieve 𝑃1. 
Since here the 

𝑃0 dissections are 

identical, we can 

invoke the corollary 

to the leapfrog 

theorem to ensure 

an infinite tree. 

 



 
 

In that example the branching number (2) is not the same as the replication number for every 

one of the polygon’s constituent rep-tiles: a rhombus is rep - 4. But the substitution rules 

explain this mismatch: the pale and dark green rhombuses alternate in position with the 

generations. 

 

 

The dodecagon, k = 2 

 

As for the octagon, so for the dodecagon. 

 



 
 

Analyse that solution. Why, despite the triangle and rhombus only being rep–4, is a 

branching number of 2 possible? What is it about the interior angles of the constituent shapes 

which maximises the number of ways they can fit together?  

 

Beyond 12 sides? 

 

Investigate polygons with more than 12 sides.  

 

 

The artistic dimension 

 

Though we can happily aggregate square numbers of tiles in our dissections, where possible 

it is more satisfying to arrange them with an aesthetic end in view. Your aim might be to 

produce the greatest number of symmetry axes, preserve rotational symmetry, maintain a 

concentric pattern, or, as suggested above, embed smaller copies of the polygon in the larger 

versions. (These possibilities are not exclusive.) 



 

Go to mathigon.org/polypad#polygons, where you will find an interactive tile environment, 

and make a polygon of the 𝑃2 set for the dodecagon. Below is my attempt. On the left is the 

simple scaling solution; on the right, a dissection with different symmetries. As you see, we 

have a generation 0 dodecagon in the centre (not the same as those of our set 𝑃0) and rotation 

symmetry of order 12. You can obtain a different pattern by swapping a square and an 

equilateral triangle for an equilateral triangle and two 30° rhombuses. 

 

 
 

 

(3) Rep-multiple tile sets 
 

We can extend the idea of a rep-tile by recognising a rep-multiple tile set or setiset. This is a 

set of polygons with the property that a polygon similar to any member of the set can be 

made by combining all the members in a certain ratio. In this diagram the set consists of two, 

similar polygons: 

 

                                                               

                                                                                                                                

                                                           {𝑎} + {𝑎′}                       {𝑎′} + {𝑎′′}               {𝑎′′} + {𝑎′′′} 

 

The pair of 120° isosceles triangles 

 

An example of such a set is the pair of 120° isosceles triangles with edges in the ratio √3 : 1. 

We shall represent the smaller by the symbol s, the larger by the symbol b.  

 

                                                                 

                                        s                                                         b               

 

We can assemble a similar triangle from the pair thus:  

                                                                                        

                                                                                               b      s  s     b 

                                                                                                         s                                    

                                                                                                        

This represents a scaling of b by √3, and therefore a scaling of s by 3. 

 

  



Beginning with our original triangles, matrix multiplication tells us how the enlarged 

triangles result from combining old ones on each iteration. A matrix is a rectangular array of 

numbers shown in a round bracket. The four brackets below are all matrices. The 

arrangement is a compact way of showing which numbers multiply and add to give us our 

new shapes. We’ve picked out a red number in the 2 × 2 matrix and shown which number it 

multiplies in the 2 × 1 matrix on its immediate right. Likewise with the blue numbers. And 

we’ve shown where the sum appears in the last bracket. Study how the same operation with 

the second row of the square matrix leads to 𝑏𝑜𝑙𝑑 becoming 𝑠𝑛𝑒𝑤. 

 

          (
𝑏𝑛𝑒𝑤

𝑠𝑛𝑒𝑤
) =  (

2 3
1 0

) (
𝑏𝑜𝑙𝑑

𝑠𝑜𝑙𝑑
) = (

2𝑏𝑜𝑙𝑑 + 3𝑠𝑜𝑙𝑑

𝑏𝑜𝑙𝑑
) .  

 

On each iteration, the triangles are scaled by √3 .  

 

The pair of golden triangles 

 

An example where the pair are not similar is the pair of isosceles triangles into which the 

diagonals divide the regular pentagon (the golden triangles). 

 

 

                                                                                                                      

                                                                        t                                  

 

                                               f  t 

                                                                                                                           

                                

                                                                                                     f 

                                           t           f                                     t 

 

Here, as you see from the figures in the second row, (
𝑡𝑛𝑒𝑤

𝑓𝑛𝑒𝑤
) = (

2 1
1 1

) (
𝑡𝑜𝑙𝑑

𝑓𝑜𝑙𝑑
). The scale factor 

is the golden ratio 𝜑 =
√5+1

2
 . 

                                                                                                      1           𝜑 

The golden square 

                                                                                           1        u            w 

There can be more than two members in a set. 

 

Here we dissect what we may call the golden square        𝜑       w            v 

into three polygons: a golden rectangle  

and a pair of squares in golden ratio. 

 

Try to complete this matrix equation. You can check your answer by seeing how the new 

shapes appear in the big square. Notice how the old square nests in the new one. 

 

(

𝑢𝑛𝑒𝑤

𝑣𝑛𝑒𝑤

𝑤𝑛𝑒𝑤

) = (
0 1 0
1 1 2
0 1 1

) (

𝑢𝑜𝑙𝑑

𝑣𝑜𝑙𝑑

𝑤𝑜𝑙𝑑

) = (
       +    

   +    +   +
           +    +

   ).     

 

The scale factor is again 𝜑. 

 

Write the area of the new square in two ways: 

as the old one scaled up: 𝜑2(𝜑 + 1)2  



and as the new one: (2𝜑 + 1)2. 

Expand each expression using the handy fact 

 that 𝜑2 = 𝜑 + 1 . 

 Do you get the same answer? 

 

 

 

 

 

 

 


