## Intervals between numbers coprime to a particular positive integer

Let N be a positive integer and consider the sequence of integers coprime to N.

EXAMPLE (N = 30)

$$\dots$$
,  $-7$ ,  $-1$ ,1,7,11,13,17,19,23,29,31,37,  $\dots$ 

Such a sequence contains a block of  $\varphi(N)$  integers, from 1 to N-1. Successive blocks of  $\varphi(N)$  integers can then be formed by adding  $\pm N, \pm 2N, \pm 3N, ...$  to each integer of the first block.

The intervals between successive integers of the sequence therefore form a repeated pattern of  $\varphi(N)$  differences, with at least one difference of 2 (the difference between  $\gamma N+1$  and  $\gamma N-1$ ). Note that the sum of  $\varphi(N)$  successive intervals will add to N (the difference between N+1 and 1).

EXAMPLE (N = 30)

 $\varphi(30) = 1x2x4 = 8$ . The repeated sequence of 8 intervals is:-

Then 6 + 4 + 2 + 4 + 2 + 4 + 6 + 2 = 30.

## Counting strip sequences

For  $1 \le i \le n$ , let  $p_i$  be distinct primes and let  $a_i$  be positive integers. Define  $N = \prod p_i$ .

By the Chinese Remainder Theorem, there is an integer X such that

$$X + i \equiv 1 \pmod{p_i^{a_i+1}}$$
, for  $1 \le i \le n$ .

For the consecutive numbers

$$L.L + 1....L + n - 1$$

to satisfy the required 'counting strip property' w.r.t. the powers  $p_i^{a_i}$ , we require

$$L + i \equiv 1 \pmod{p_i^{a_i}}, L + i \not\equiv 1 \pmod{p_i^{a_i+1}}$$

$$\Leftrightarrow L = X + \gamma p_1^{a_1} \dots p_n^{a_n}$$
, with  $\gamma$  coprime to  $N$ .

The required results therefore follow immediately from the results for numbers coprime to N.

## EXAMPLE (Factors 3, ,4, 5)

A suitable value for X is 423. Then

$$X \equiv 0 \pmod{3^2}, X + 1 \equiv 0 \pmod{2^3}, X + 2 \equiv 0 \pmod{5^2}.$$

So  $L=423+\gamma 60$ , with  $\gamma$  coprime to 30. Then

$$\gamma = -7$$
 gives the sequence (3,4,5),

$$\gamma = -1$$
 gives the sequence (363,364,365),

etc.