
3-D Times Table I

This is the usual multiplication square:

×	1	2	3	4	5	6	7	8	9	10
1		2	(3)	4	5	6	7	8	9	10
2	2	$\overline{4}$	6	8	10	12	14	16	18	20
3	\bigcirc	\bigcirc	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	(72)	80
9	9	18	27	36	45	54	63	(72)	81	90
10	10	20	30	40	50	60	70	80	90	100

This is the 3D square with sticks whose heights are the products. 18 sticks are in place:

- Working with your partner, place the remaining 82 sticks in the correct holes.
- These two facts may help you: 1. The globes for each set of multiples line up. 2. Each globe is reflected in an imaginary mirror running top left to bottom right.